changelog shortlog graph tags branches changeset file revisions annotate raw help

Mercurial > core / lisp/ffi/tree-sitter/alien.h

revision 697: 08621be7e780
parent 696: 38e9c3be2392
child 698: 96958d3eb5b0
     1.1--- a/lisp/ffi/tree-sitter/alien.h	Fri Oct 04 21:11:52 2024 -0400
     1.2+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3@@ -1,1282 +0,0 @@
     1.4-#ifndef TREE_SITTER_API_H_
     1.5-#define TREE_SITTER_API_H_
     1.6-
     1.7-#ifndef TREE_SITTER_HIDE_SYMBOLS
     1.8-#if defined(__GNUC__) || defined(__clang__)
     1.9-#pragma GCC visibility push(default)
    1.10-#endif
    1.11-#endif
    1.12-
    1.13-#include <stdlib.h>
    1.14-#include <stdint.h>
    1.15-#include <stdbool.h>
    1.16-
    1.17-#ifdef __cplusplus
    1.18-extern "C" {
    1.19-#endif
    1.20-
    1.21-/****************************/
    1.22-/* Section - ABI Versioning */
    1.23-/****************************/
    1.24-
    1.25-/**
    1.26- * The latest ABI version that is supported by the current version of the
    1.27- * library. When Languages are generated by the Tree-sitter CLI, they are
    1.28- * assigned an ABI version number that corresponds to the current CLI version.
    1.29- * The Tree-sitter library is generally backwards-compatible with languages
    1.30- * generated using older CLI versions, but is not forwards-compatible.
    1.31- */
    1.32-#define TREE_SITTER_LANGUAGE_VERSION 14
    1.33-
    1.34-/**
    1.35- * The earliest ABI version that is supported by the current version of the
    1.36- * library.
    1.37- */
    1.38-#define TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION 13
    1.39-
    1.40-/*******************/
    1.41-/* Section - Types */
    1.42-/*******************/
    1.43-
    1.44-typedef uint16_t TSStateId;
    1.45-typedef uint16_t TSSymbol;
    1.46-typedef uint16_t TSFieldId;
    1.47-typedef struct TSLanguage TSLanguage;
    1.48-typedef struct TSParser TSParser;
    1.49-typedef struct TSTree TSTree;
    1.50-typedef struct TSQuery TSQuery;
    1.51-typedef struct TSQueryCursor TSQueryCursor;
    1.52-typedef struct TSLookaheadIterator TSLookaheadIterator;
    1.53-
    1.54-typedef enum TSInputEncoding {
    1.55-  TSInputEncodingUTF8,
    1.56-  TSInputEncodingUTF16,
    1.57-} TSInputEncoding;
    1.58-
    1.59-typedef enum TSSymbolType {
    1.60-  TSSymbolTypeRegular,
    1.61-  TSSymbolTypeAnonymous,
    1.62-  TSSymbolTypeAuxiliary,
    1.63-} TSSymbolType;
    1.64-
    1.65-typedef struct TSPoint {
    1.66-  uint32_t row;
    1.67-  uint32_t column;
    1.68-} TSPoint;
    1.69-
    1.70-typedef struct TSRange {
    1.71-  TSPoint start_point;
    1.72-  TSPoint end_point;
    1.73-  uint32_t start_byte;
    1.74-  uint32_t end_byte;
    1.75-} TSRange;
    1.76-
    1.77-typedef struct TSInput {
    1.78-  void *payload;
    1.79-  const char *(*read)(void *payload, uint32_t byte_index, TSPoint position, uint32_t *bytes_read);
    1.80-  TSInputEncoding encoding;
    1.81-} TSInput;
    1.82-
    1.83-typedef enum TSLogType {
    1.84-  TSLogTypeParse,
    1.85-  TSLogTypeLex,
    1.86-} TSLogType;
    1.87-
    1.88-typedef struct TSLogger {
    1.89-  void *payload;
    1.90-  void (*log)(void *payload, TSLogType log_type, const char *buffer);
    1.91-} TSLogger;
    1.92-
    1.93-typedef struct TSInputEdit {
    1.94-  uint32_t start_byte;
    1.95-  uint32_t old_end_byte;
    1.96-  uint32_t new_end_byte;
    1.97-  TSPoint start_point;
    1.98-  TSPoint old_end_point;
    1.99-  TSPoint new_end_point;
   1.100-} TSInputEdit;
   1.101-
   1.102-typedef struct TSNode {
   1.103-  uint32_t context[4];
   1.104-  const void *id;
   1.105-  const TSTree *tree;
   1.106-} TSNode;
   1.107-
   1.108-typedef struct TSTreeCursor {
   1.109-  const void *tree;
   1.110-  const void *id;
   1.111-  uint32_t context[3];
   1.112-} TSTreeCursor;
   1.113-
   1.114-typedef struct TSQueryCapture {
   1.115-  TSNode node;
   1.116-  uint32_t index;
   1.117-} TSQueryCapture;
   1.118-
   1.119-typedef enum TSQuantifier {
   1.120-  TSQuantifierZero = 0, // must match the array initialization value
   1.121-  TSQuantifierZeroOrOne,
   1.122-  TSQuantifierZeroOrMore,
   1.123-  TSQuantifierOne,
   1.124-  TSQuantifierOneOrMore,
   1.125-} TSQuantifier;
   1.126-
   1.127-typedef struct TSQueryMatch {
   1.128-  uint32_t id;
   1.129-  uint16_t pattern_index;
   1.130-  uint16_t capture_count;
   1.131-  const TSQueryCapture *captures;
   1.132-} TSQueryMatch;
   1.133-
   1.134-typedef enum TSQueryPredicateStepType {
   1.135-  TSQueryPredicateStepTypeDone,
   1.136-  TSQueryPredicateStepTypeCapture,
   1.137-  TSQueryPredicateStepTypeString,
   1.138-} TSQueryPredicateStepType;
   1.139-
   1.140-typedef struct TSQueryPredicateStep {
   1.141-  TSQueryPredicateStepType type;
   1.142-  uint32_t value_id;
   1.143-} TSQueryPredicateStep;
   1.144-
   1.145-typedef enum TSQueryError {
   1.146-  TSQueryErrorNone = 0,
   1.147-  TSQueryErrorSyntax,
   1.148-  TSQueryErrorNodeType,
   1.149-  TSQueryErrorField,
   1.150-  TSQueryErrorCapture,
   1.151-  TSQueryErrorStructure,
   1.152-  TSQueryErrorLanguage,
   1.153-} TSQueryError;
   1.154-
   1.155-/********************/
   1.156-/* Section - Parser */
   1.157-/********************/
   1.158-
   1.159-/**
   1.160- * Create a new parser.
   1.161- */
   1.162-TSParser *ts_parser_new(void);
   1.163-
   1.164-/**
   1.165- * Delete the parser, freeing all of the memory that it used.
   1.166- */
   1.167-void ts_parser_delete(TSParser *self);
   1.168-
   1.169-/**
   1.170- * Get the parser's current language.
   1.171- */
   1.172-const TSLanguage *ts_parser_language(const TSParser *self);
   1.173-
   1.174-/**
   1.175- * Set the language that the parser should use for parsing.
   1.176- *
   1.177- * Returns a boolean indicating whether or not the language was successfully
   1.178- * assigned. True means assignment succeeded. False means there was a version
   1.179- * mismatch: the language was generated with an incompatible version of the
   1.180- * Tree-sitter CLI. Check the language's version using [`ts_language_version`]
   1.181- * and compare it to this library's [`TREE_SITTER_LANGUAGE_VERSION`] and
   1.182- * [`TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION`] constants.
   1.183- */
   1.184-bool ts_parser_set_language(TSParser *self, const TSLanguage *language);
   1.185-
   1.186-/**
   1.187- * Set the ranges of text that the parser should include when parsing.
   1.188- *
   1.189- * By default, the parser will always include entire documents. This function
   1.190- * allows you to parse only a *portion* of a document but still return a syntax
   1.191- * tree whose ranges match up with the document as a whole. You can also pass
   1.192- * multiple disjoint ranges.
   1.193- *
   1.194- * The second and third parameters specify the location and length of an array
   1.195- * of ranges. The parser does *not* take ownership of these ranges; it copies
   1.196- * the data, so it doesn't matter how these ranges are allocated.
   1.197- *
   1.198- * If `count` is zero, then the entire document will be parsed. Otherwise,
   1.199- * the given ranges must be ordered from earliest to latest in the document,
   1.200- * and they must not overlap. That is, the following must hold for all:
   1.201- *
   1.202- * `i < count - 1`: `ranges[i].end_byte <= ranges[i + 1].start_byte`
   1.203- *
   1.204- * If this requirement is not satisfied, the operation will fail, the ranges
   1.205- * will not be assigned, and this function will return `false`. On success,
   1.206- * this function returns `true`
   1.207- */
   1.208-bool ts_parser_set_included_ranges(
   1.209-  TSParser *self,
   1.210-  const TSRange *ranges,
   1.211-  uint32_t count
   1.212-);
   1.213-
   1.214-/**
   1.215- * Get the ranges of text that the parser will include when parsing.
   1.216- *
   1.217- * The returned pointer is owned by the parser. The caller should not free it
   1.218- * or write to it. The length of the array will be written to the given
   1.219- * `count` pointer.
   1.220- */
   1.221-const TSRange *ts_parser_included_ranges(
   1.222-  const TSParser *self,
   1.223-  uint32_t *count
   1.224-);
   1.225-
   1.226-/**
   1.227- * Use the parser to parse some source code and create a syntax tree.
   1.228- *
   1.229- * If you are parsing this document for the first time, pass `NULL` for the
   1.230- * `old_tree` parameter. Otherwise, if you have already parsed an earlier
   1.231- * version of this document and the document has since been edited, pass the
   1.232- * previous syntax tree so that the unchanged parts of it can be reused.
   1.233- * This will save time and memory. For this to work correctly, you must have
   1.234- * already edited the old syntax tree using the [`ts_tree_edit`] function in a
   1.235- * way that exactly matches the source code changes.
   1.236- *
   1.237- * The [`TSInput`] parameter lets you specify how to read the text. It has the
   1.238- * following three fields:
   1.239- * 1. [`read`]: A function to retrieve a chunk of text at a given byte offset
   1.240- *    and (row, column) position. The function should return a pointer to the
   1.241- *    text and write its length to the [`bytes_read`] pointer. The parser does
   1.242- *    not take ownership of this buffer; it just borrows it until it has
   1.243- *    finished reading it. The function should write a zero value to the
   1.244- *    [`bytes_read`] pointer to indicate the end of the document.
   1.245- * 2. [`payload`]: An arbitrary pointer that will be passed to each invocation
   1.246- *    of the [`read`] function.
   1.247- * 3. [`encoding`]: An indication of how the text is encoded. Either
   1.248- *    `TSInputEncodingUTF8` or `TSInputEncodingUTF16`.
   1.249- *
   1.250- * This function returns a syntax tree on success, and `NULL` on failure. There
   1.251- * are three possible reasons for failure:
   1.252- * 1. The parser does not have a language assigned. Check for this using the
   1.253-      [`ts_parser_language`] function.
   1.254- * 2. Parsing was cancelled due to a timeout that was set by an earlier call to
   1.255- *    the [`ts_parser_set_timeout_micros`] function. You can resume parsing from
   1.256- *    where the parser left out by calling [`ts_parser_parse`] again with the
   1.257- *    same arguments. Or you can start parsing from scratch by first calling
   1.258- *    [`ts_parser_reset`].
   1.259- * 3. Parsing was cancelled using a cancellation flag that was set by an
   1.260- *    earlier call to [`ts_parser_set_cancellation_flag`]. You can resume parsing
   1.261- *    from where the parser left out by calling [`ts_parser_parse`] again with
   1.262- *    the same arguments.
   1.263- *
   1.264- * [`read`]: TSInput::read
   1.265- * [`payload`]: TSInput::payload
   1.266- * [`encoding`]: TSInput::encoding
   1.267- * [`bytes_read`]: TSInput::read
   1.268- */
   1.269-TSTree *ts_parser_parse(
   1.270-  TSParser *self,
   1.271-  const TSTree *old_tree,
   1.272-  TSInput input
   1.273-);
   1.274-
   1.275-/**
   1.276- * Use the parser to parse some source code stored in one contiguous buffer.
   1.277- * The first two parameters are the same as in the [`ts_parser_parse`] function
   1.278- * above. The second two parameters indicate the location of the buffer and its
   1.279- * length in bytes.
   1.280- */
   1.281-TSTree *ts_parser_parse_string(
   1.282-  TSParser *self,
   1.283-  const TSTree *old_tree,
   1.284-  const char *string,
   1.285-  uint32_t length
   1.286-);
   1.287-
   1.288-/**
   1.289- * Use the parser to parse some source code stored in one contiguous buffer with
   1.290- * a given encoding. The first four parameters work the same as in the
   1.291- * [`ts_parser_parse_string`] method above. The final parameter indicates whether
   1.292- * the text is encoded as UTF8 or UTF16.
   1.293- */
   1.294-TSTree *ts_parser_parse_string_encoding(
   1.295-  TSParser *self,
   1.296-  const TSTree *old_tree,
   1.297-  const char *string,
   1.298-  uint32_t length,
   1.299-  TSInputEncoding encoding
   1.300-);
   1.301-
   1.302-/**
   1.303- * Instruct the parser to start the next parse from the beginning.
   1.304- *
   1.305- * If the parser previously failed because of a timeout or a cancellation, then
   1.306- * by default, it will resume where it left off on the next call to
   1.307- * [`ts_parser_parse`] or other parsing functions. If you don't want to resume,
   1.308- * and instead intend to use this parser to parse some other document, you must
   1.309- * call [`ts_parser_reset`] first.
   1.310- */
   1.311-void ts_parser_reset(TSParser *self);
   1.312-
   1.313-/**
   1.314- * Set the maximum duration in microseconds that parsing should be allowed to
   1.315- * take before halting.
   1.316- *
   1.317- * If parsing takes longer than this, it will halt early, returning NULL.
   1.318- * See [`ts_parser_parse`] for more information.
   1.319- */
   1.320-void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout_micros);
   1.321-
   1.322-/**
   1.323- * Get the duration in microseconds that parsing is allowed to take.
   1.324- */
   1.325-uint64_t ts_parser_timeout_micros(const TSParser *self);
   1.326-
   1.327-/**
   1.328- * Set the parser's current cancellation flag pointer.
   1.329- *
   1.330- * If a non-null pointer is assigned, then the parser will periodically read
   1.331- * from this pointer during parsing. If it reads a non-zero value, it will
   1.332- * halt early, returning NULL. See [`ts_parser_parse`] for more information.
   1.333- */
   1.334-void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag);
   1.335-
   1.336-/**
   1.337- * Get the parser's current cancellation flag pointer.
   1.338- */
   1.339-const size_t *ts_parser_cancellation_flag(const TSParser *self);
   1.340-
   1.341-/**
   1.342- * Set the logger that a parser should use during parsing.
   1.343- *
   1.344- * The parser does not take ownership over the logger payload. If a logger was
   1.345- * previously assigned, the caller is responsible for releasing any memory
   1.346- * owned by the previous logger.
   1.347- */
   1.348-void ts_parser_set_logger(TSParser *self, TSLogger logger);
   1.349-
   1.350-/**
   1.351- * Get the parser's current logger.
   1.352- */
   1.353-TSLogger ts_parser_logger(const TSParser *self);
   1.354-
   1.355-/**
   1.356- * Set the file descriptor to which the parser should write debugging graphs
   1.357- * during parsing. The graphs are formatted in the DOT language. You may want
   1.358- * to pipe these graphs directly to a `dot(1)` process in order to generate
   1.359- * SVG output. You can turn off this logging by passing a negative number.
   1.360- */
   1.361-void ts_parser_print_dot_graphs(TSParser *self, int fd);
   1.362-
   1.363-/******************/
   1.364-/* Section - Tree */
   1.365-/******************/
   1.366-
   1.367-/**
   1.368- * Create a shallow copy of the syntax tree. This is very fast.
   1.369- *
   1.370- * You need to copy a syntax tree in order to use it on more than one thread at
   1.371- * a time, as syntax trees are not thread safe.
   1.372- */
   1.373-TSTree *ts_tree_copy(const TSTree *self);
   1.374-
   1.375-/**
   1.376- * Delete the syntax tree, freeing all of the memory that it used.
   1.377- */
   1.378-void ts_tree_delete(TSTree *self);
   1.379-
   1.380-/**
   1.381- * Get the root node of the syntax tree.
   1.382- */
   1.383-TSNode ts_tree_root_node(const TSTree *self);
   1.384-
   1.385-/**
   1.386- * Get the root node of the syntax tree, but with its position
   1.387- * shifted forward by the given offset.
   1.388- */
   1.389-TSNode ts_tree_root_node_with_offset(
   1.390-  const TSTree *self,
   1.391-  uint32_t offset_bytes,
   1.392-  TSPoint offset_extent
   1.393-);
   1.394-
   1.395-/**
   1.396- * Get the language that was used to parse the syntax tree.
   1.397- */
   1.398-const TSLanguage *ts_tree_language(const TSTree *self);
   1.399-
   1.400-/**
   1.401- * Get the array of included ranges that was used to parse the syntax tree.
   1.402- *
   1.403- * The returned pointer must be freed by the caller.
   1.404- */
   1.405-TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length);
   1.406-
   1.407-/**
   1.408- * Edit the syntax tree to keep it in sync with source code that has been
   1.409- * edited.
   1.410- *
   1.411- * You must describe the edit both in terms of byte offsets and in terms of
   1.412- * (row, column) coordinates.
   1.413- */
   1.414-void ts_tree_edit(TSTree *self, const TSInputEdit *edit);
   1.415-
   1.416-/**
   1.417- * Compare an old edited syntax tree to a new syntax tree representing the same
   1.418- * document, returning an array of ranges whose syntactic structure has changed.
   1.419- *
   1.420- * For this to work correctly, the old syntax tree must have been edited such
   1.421- * that its ranges match up to the new tree. Generally, you'll want to call
   1.422- * this function right after calling one of the [`ts_parser_parse`] functions.
   1.423- * You need to pass the old tree that was passed to parse, as well as the new
   1.424- * tree that was returned from that function.
   1.425- *
   1.426- * The returned array is allocated using `malloc` and the caller is responsible
   1.427- * for freeing it using `free`. The length of the array will be written to the
   1.428- * given `length` pointer.
   1.429- */
   1.430-TSRange *ts_tree_get_changed_ranges(
   1.431-  const TSTree *old_tree,
   1.432-  const TSTree *new_tree,
   1.433-  uint32_t *length
   1.434-);
   1.435-
   1.436-/**
   1.437- * Write a DOT graph describing the syntax tree to the given file.
   1.438- */
   1.439-void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor);
   1.440-
   1.441-/******************/
   1.442-/* Section - Node */
   1.443-/******************/
   1.444-
   1.445-/**
   1.446- * Get the node's type as a null-terminated string.
   1.447- */
   1.448-const char *ts_node_type(TSNode self);
   1.449-
   1.450-/**
   1.451- * Get the node's type as a numerical id.
   1.452- */
   1.453-TSSymbol ts_node_symbol(TSNode self);
   1.454-
   1.455-/**
   1.456- * Get the node's language.
   1.457- */
   1.458-const TSLanguage *ts_node_language(TSNode self);
   1.459-
   1.460-/**
   1.461- * Get the node's type as it appears in the grammar ignoring aliases as a
   1.462- * null-terminated string.
   1.463- */
   1.464-const char *ts_node_grammar_type(TSNode self);
   1.465-
   1.466-/**
   1.467- * Get the node's type as a numerical id as it appears in the grammar ignoring
   1.468- * aliases. This should be used in [`ts_language_next_state`] instead of
   1.469- * [`ts_node_symbol`].
   1.470- */
   1.471-TSSymbol ts_node_grammar_symbol(TSNode self);
   1.472-
   1.473-/**
   1.474- * Get the node's start byte.
   1.475- */
   1.476-uint32_t ts_node_start_byte(TSNode self);
   1.477-
   1.478-/**
   1.479- * Get the node's start position in terms of rows and columns.
   1.480- */
   1.481-TSPoint ts_node_start_point(TSNode self);
   1.482-
   1.483-/**
   1.484- * Get the node's end byte.
   1.485- */
   1.486-uint32_t ts_node_end_byte(TSNode self);
   1.487-
   1.488-/**
   1.489- * Get the node's end position in terms of rows and columns.
   1.490- */
   1.491-TSPoint ts_node_end_point(TSNode self);
   1.492-
   1.493-/**
   1.494- * Get an S-expression representing the node as a string.
   1.495- *
   1.496- * This string is allocated with `malloc` and the caller is responsible for
   1.497- * freeing it using `free`.
   1.498- */
   1.499-char *ts_node_string(TSNode self);
   1.500-
   1.501-/**
   1.502- * Check if the node is null. Functions like [`ts_node_child`] and
   1.503- * [`ts_node_next_sibling`] will return a null node to indicate that no such node
   1.504- * was found.
   1.505- */
   1.506-bool ts_node_is_null(TSNode self);
   1.507-
   1.508-/**
   1.509- * Check if the node is *named*. Named nodes correspond to named rules in the
   1.510- * grammar, whereas *anonymous* nodes correspond to string literals in the
   1.511- * grammar.
   1.512- */
   1.513-bool ts_node_is_named(TSNode self);
   1.514-
   1.515-/**
   1.516- * Check if the node is *missing*. Missing nodes are inserted by the parser in
   1.517- * order to recover from certain kinds of syntax errors.
   1.518- */
   1.519-bool ts_node_is_missing(TSNode self);
   1.520-
   1.521-/**
   1.522- * Check if the node is *extra*. Extra nodes represent things like comments,
   1.523- * which are not required the grammar, but can appear anywhere.
   1.524- */
   1.525-bool ts_node_is_extra(TSNode self);
   1.526-
   1.527-/**
   1.528- * Check if a syntax node has been edited.
   1.529- */
   1.530-bool ts_node_has_changes(TSNode self);
   1.531-
   1.532-/**
   1.533- * Check if the node is a syntax error or contains any syntax errors.
   1.534- */
   1.535-bool ts_node_has_error(TSNode self);
   1.536-
   1.537-/**
   1.538- * Check if the node is a syntax error.
   1.539-*/
   1.540-bool ts_node_is_error(TSNode self);
   1.541-
   1.542-/**
   1.543- * Get this node's parse state.
   1.544-*/
   1.545-TSStateId ts_node_parse_state(TSNode self);
   1.546-
   1.547-/**
   1.548- * Get the parse state after this node.
   1.549-*/
   1.550-TSStateId ts_node_next_parse_state(TSNode self);
   1.551-
   1.552-/**
   1.553- * Get the node's immediate parent.
   1.554- * Prefer [`ts_node_child_containing_descendant`] for
   1.555- * iterating over the node's ancestors.
   1.556- */
   1.557-TSNode ts_node_parent(TSNode self);
   1.558-
   1.559-/**
   1.560- * Get the node's child that contains `descendant`.
   1.561- */
   1.562-TSNode ts_node_child_containing_descendant(TSNode self, TSNode descendant);
   1.563-
   1.564-/**
   1.565- * Get the node's child at the given index, where zero represents the first
   1.566- * child.
   1.567- */
   1.568-TSNode ts_node_child(TSNode self, uint32_t child_index);
   1.569-
   1.570-/**
   1.571- * Get the field name for node's child at the given index, where zero represents
   1.572- * the first child. Returns NULL, if no field is found.
   1.573- */
   1.574-const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index);
   1.575-
   1.576-/**
   1.577- * Get the node's number of children.
   1.578- */
   1.579-uint32_t ts_node_child_count(TSNode self);
   1.580-
   1.581-/**
   1.582- * Get the node's *named* child at the given index.
   1.583- *
   1.584- * See also [`ts_node_is_named`].
   1.585- */
   1.586-TSNode ts_node_named_child(TSNode self, uint32_t child_index);
   1.587-
   1.588-/**
   1.589- * Get the node's number of *named* children.
   1.590- *
   1.591- * See also [`ts_node_is_named`].
   1.592- */
   1.593-uint32_t ts_node_named_child_count(TSNode self);
   1.594-
   1.595-/**
   1.596- * Get the node's child with the given field name.
   1.597- */
   1.598-TSNode ts_node_child_by_field_name(
   1.599-  TSNode self,
   1.600-  const char *name,
   1.601-  uint32_t name_length
   1.602-);
   1.603-
   1.604-/**
   1.605- * Get the node's child with the given numerical field id.
   1.606- *
   1.607- * You can convert a field name to an id using the
   1.608- * [`ts_language_field_id_for_name`] function.
   1.609- */
   1.610-TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id);
   1.611-
   1.612-/**
   1.613- * Get the node's next / previous sibling.
   1.614- */
   1.615-TSNode ts_node_next_sibling(TSNode self);
   1.616-TSNode ts_node_prev_sibling(TSNode self);
   1.617-
   1.618-/**
   1.619- * Get the node's next / previous *named* sibling.
   1.620- */
   1.621-TSNode ts_node_next_named_sibling(TSNode self);
   1.622-TSNode ts_node_prev_named_sibling(TSNode self);
   1.623-
   1.624-/**
   1.625- * Get the node's first child that extends beyond the given byte offset.
   1.626- */
   1.627-TSNode ts_node_first_child_for_byte(TSNode self, uint32_t byte);
   1.628-
   1.629-/**
   1.630- * Get the node's first named child that extends beyond the given byte offset.
   1.631- */
   1.632-TSNode ts_node_first_named_child_for_byte(TSNode self, uint32_t byte);
   1.633-
   1.634-/**
   1.635- * Get the node's number of descendants, including one for the node itself.
   1.636- */
   1.637-uint32_t ts_node_descendant_count(TSNode self);
   1.638-
   1.639-/**
   1.640- * Get the smallest node within this node that spans the given range of bytes
   1.641- * or (row, column) positions.
   1.642- */
   1.643-TSNode ts_node_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end);
   1.644-TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end);
   1.645-
   1.646-/**
   1.647- * Get the smallest named node within this node that spans the given range of
   1.648- * bytes or (row, column) positions.
   1.649- */
   1.650-TSNode ts_node_named_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end);
   1.651-TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end);
   1.652-
   1.653-/**
   1.654- * Edit the node to keep it in-sync with source code that has been edited.
   1.655- *
   1.656- * This function is only rarely needed. When you edit a syntax tree with the
   1.657- * [`ts_tree_edit`] function, all of the nodes that you retrieve from the tree
   1.658- * afterward will already reflect the edit. You only need to use [`ts_node_edit`]
   1.659- * when you have a [`TSNode`] instance that you want to keep and continue to use
   1.660- * after an edit.
   1.661- */
   1.662-void ts_node_edit(TSNode *self, const TSInputEdit *edit);
   1.663-
   1.664-/**
   1.665- * Check if two nodes are identical.
   1.666- */
   1.667-bool ts_node_eq(TSNode self, TSNode other);
   1.668-
   1.669-/************************/
   1.670-/* Section - TreeCursor */
   1.671-/************************/
   1.672-
   1.673-/**
   1.674- * Create a new tree cursor starting from the given node.
   1.675- *
   1.676- * A tree cursor allows you to walk a syntax tree more efficiently than is
   1.677- * possible using the [`TSNode`] functions. It is a mutable object that is always
   1.678- * on a certain syntax node, and can be moved imperatively to different nodes.
   1.679- */
   1.680-TSTreeCursor ts_tree_cursor_new(TSNode node);
   1.681-
   1.682-/**
   1.683- * Delete a tree cursor, freeing all of the memory that it used.
   1.684- */
   1.685-void ts_tree_cursor_delete(TSTreeCursor *self);
   1.686-
   1.687-/**
   1.688- * Re-initialize a tree cursor to start at the original node that the cursor was
   1.689- * constructed with.
   1.690- */
   1.691-void ts_tree_cursor_reset(TSTreeCursor *self, TSNode node);
   1.692-
   1.693-/**
   1.694- * Re-initialize a tree cursor to the same position as another cursor.
   1.695- *
   1.696- * Unlike [`ts_tree_cursor_reset`], this will not lose parent information and
   1.697- * allows reusing already created cursors.
   1.698-*/
   1.699-void ts_tree_cursor_reset_to(TSTreeCursor *dst, const TSTreeCursor *src);
   1.700-
   1.701-/**
   1.702- * Get the tree cursor's current node.
   1.703- */
   1.704-TSNode ts_tree_cursor_current_node(const TSTreeCursor *self);
   1.705-
   1.706-/**
   1.707- * Get the field name of the tree cursor's current node.
   1.708- *
   1.709- * This returns `NULL` if the current node doesn't have a field.
   1.710- * See also [`ts_node_child_by_field_name`].
   1.711- */
   1.712-const char *ts_tree_cursor_current_field_name(const TSTreeCursor *self);
   1.713-
   1.714-/**
   1.715- * Get the field id of the tree cursor's current node.
   1.716- *
   1.717- * This returns zero if the current node doesn't have a field.
   1.718- * See also [`ts_node_child_by_field_id`], [`ts_language_field_id_for_name`].
   1.719- */
   1.720-TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *self);
   1.721-
   1.722-/**
   1.723- * Move the cursor to the parent of its current node.
   1.724- *
   1.725- * This returns `true` if the cursor successfully moved, and returns `false`
   1.726- * if there was no parent node (the cursor was already on the root node).
   1.727- */
   1.728-bool ts_tree_cursor_goto_parent(TSTreeCursor *self);
   1.729-
   1.730-/**
   1.731- * Move the cursor to the next sibling of its current node.
   1.732- *
   1.733- * This returns `true` if the cursor successfully moved, and returns `false`
   1.734- * if there was no next sibling node.
   1.735- */
   1.736-bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self);
   1.737-
   1.738-/**
   1.739- * Move the cursor to the previous sibling of its current node.
   1.740- *
   1.741- * This returns `true` if the cursor successfully moved, and returns `false` if
   1.742- * there was no previous sibling node.
   1.743- *
   1.744- * Note, that this function may be slower than
   1.745- * [`ts_tree_cursor_goto_next_sibling`] due to how node positions are stored. In
   1.746- * the worst case, this will need to iterate through all the children upto the
   1.747- * previous sibling node to recalculate its position.
   1.748- */
   1.749-bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self);
   1.750-
   1.751-/**
   1.752- * Move the cursor to the first child of its current node.
   1.753- *
   1.754- * This returns `true` if the cursor successfully moved, and returns `false`
   1.755- * if there were no children.
   1.756- */
   1.757-bool ts_tree_cursor_goto_first_child(TSTreeCursor *self);
   1.758-
   1.759-/**
   1.760- * Move the cursor to the last child of its current node.
   1.761- *
   1.762- * This returns `true` if the cursor successfully moved, and returns `false` if
   1.763- * there were no children.
   1.764- *
   1.765- * Note that this function may be slower than [`ts_tree_cursor_goto_first_child`]
   1.766- * because it needs to iterate through all the children to compute the child's
   1.767- * position.
   1.768- */
   1.769-bool ts_tree_cursor_goto_last_child(TSTreeCursor *self);
   1.770-
   1.771-/**
   1.772- * Move the cursor to the node that is the nth descendant of
   1.773- * the original node that the cursor was constructed with, where
   1.774- * zero represents the original node itself.
   1.775- */
   1.776-void ts_tree_cursor_goto_descendant(TSTreeCursor *self, uint32_t goal_descendant_index);
   1.777-
   1.778-/**
   1.779- * Get the index of the cursor's current node out of all of the
   1.780- * descendants of the original node that the cursor was constructed with.
   1.781- */
   1.782-uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *self);
   1.783-
   1.784-/**
   1.785- * Get the depth of the cursor's current node relative to the original
   1.786- * node that the cursor was constructed with.
   1.787- */
   1.788-uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *self);
   1.789-
   1.790-/**
   1.791- * Move the cursor to the first child of its current node that extends beyond
   1.792- * the given byte offset or point.
   1.793- *
   1.794- * This returns the index of the child node if one was found, and returns -1
   1.795- * if no such child was found.
   1.796- */
   1.797-int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte);
   1.798-int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point);
   1.799-
   1.800-TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *cursor);
   1.801-
   1.802-/*******************/
   1.803-/* Section - Query */
   1.804-/*******************/
   1.805-
   1.806-/**
   1.807- * Create a new query from a string containing one or more S-expression
   1.808- * patterns. The query is associated with a particular language, and can
   1.809- * only be run on syntax nodes parsed with that language.
   1.810- *
   1.811- * If all of the given patterns are valid, this returns a [`TSQuery`].
   1.812- * If a pattern is invalid, this returns `NULL`, and provides two pieces
   1.813- * of information about the problem:
   1.814- * 1. The byte offset of the error is written to the `error_offset` parameter.
   1.815- * 2. The type of error is written to the `error_type` parameter.
   1.816- */
   1.817-TSQuery *ts_query_new(
   1.818-  const TSLanguage *language,
   1.819-  const char *source,
   1.820-  uint32_t source_len,
   1.821-  uint32_t *error_offset,
   1.822-  TSQueryError *error_type
   1.823-);
   1.824-
   1.825-/**
   1.826- * Delete a query, freeing all of the memory that it used.
   1.827- */
   1.828-void ts_query_delete(TSQuery *self);
   1.829-
   1.830-/**
   1.831- * Get the number of patterns, captures, or string literals in the query.
   1.832- */
   1.833-uint32_t ts_query_pattern_count(const TSQuery *self);
   1.834-uint32_t ts_query_capture_count(const TSQuery *self);
   1.835-uint32_t ts_query_string_count(const TSQuery *self);
   1.836-
   1.837-/**
   1.838- * Get the byte offset where the given pattern starts in the query's source.
   1.839- *
   1.840- * This can be useful when combining queries by concatenating their source
   1.841- * code strings.
   1.842- */
   1.843-uint32_t ts_query_start_byte_for_pattern(const TSQuery *self, uint32_t pattern_index);
   1.844-
   1.845-/**
   1.846- * Get the byte offset where the given pattern ends in the query's source.
   1.847- *
   1.848- * This can be useful when combining queries by concatenating their source
   1.849- * code strings.
   1.850- */
   1.851-uint32_t ts_query_end_byte_for_pattern(const TSQuery *self, uint32_t pattern_index);
   1.852-
   1.853-/**
   1.854- * Get all of the predicates for the given pattern in the query.
   1.855- *
   1.856- * The predicates are represented as a single array of steps. There are three
   1.857- * types of steps in this array, which correspond to the three legal values for
   1.858- * the `type` field:
   1.859- * - `TSQueryPredicateStepTypeCapture` - Steps with this type represent names
   1.860- *    of captures. Their `value_id` can be used with the
   1.861- *   [`ts_query_capture_name_for_id`] function to obtain the name of the capture.
   1.862- * - `TSQueryPredicateStepTypeString` - Steps with this type represent literal
   1.863- *    strings. Their `value_id` can be used with the
   1.864- *    [`ts_query_string_value_for_id`] function to obtain their string value.
   1.865- * - `TSQueryPredicateStepTypeDone` - Steps with this type are *sentinels*
   1.866- *    that represent the end of an individual predicate. If a pattern has two
   1.867- *    predicates, then there will be two steps with this `type` in the array.
   1.868- */
   1.869-const TSQueryPredicateStep *ts_query_predicates_for_pattern(
   1.870-  const TSQuery *self,
   1.871-  uint32_t pattern_index,
   1.872-  uint32_t *step_count
   1.873-);
   1.874-
   1.875-/*
   1.876- * Check if the given pattern in the query has a single root node.
   1.877- */
   1.878-bool ts_query_is_pattern_rooted(const TSQuery *self, uint32_t pattern_index);
   1.879-
   1.880-/*
   1.881- * Check if the given pattern in the query is 'non local'.
   1.882- *
   1.883- * A non-local pattern has multiple root nodes and can match within a
   1.884- * repeating sequence of nodes, as specified by the grammar. Non-local
   1.885- * patterns disable certain optimizations that would otherwise be possible
   1.886- * when executing a query on a specific range of a syntax tree.
   1.887- */
   1.888-bool ts_query_is_pattern_non_local(const TSQuery *self, uint32_t pattern_index);
   1.889-
   1.890-/*
   1.891- * Check if a given pattern is guaranteed to match once a given step is reached.
   1.892- * The step is specified by its byte offset in the query's source code.
   1.893- */
   1.894-bool ts_query_is_pattern_guaranteed_at_step(const TSQuery *self, uint32_t byte_offset);
   1.895-
   1.896-/**
   1.897- * Get the name and length of one of the query's captures, or one of the
   1.898- * query's string literals. Each capture and string is associated with a
   1.899- * numeric id based on the order that it appeared in the query's source.
   1.900- */
   1.901-const char *ts_query_capture_name_for_id(
   1.902-  const TSQuery *self,
   1.903-  uint32_t index,
   1.904-  uint32_t *length
   1.905-);
   1.906-
   1.907-/**
   1.908- * Get the quantifier of the query's captures. Each capture is * associated
   1.909- * with a numeric id based on the order that it appeared in the query's source.
   1.910- */
   1.911-TSQuantifier ts_query_capture_quantifier_for_id(
   1.912-  const TSQuery *self,
   1.913-  uint32_t pattern_index,
   1.914-  uint32_t capture_index
   1.915-);
   1.916-
   1.917-const char *ts_query_string_value_for_id(
   1.918-  const TSQuery *self,
   1.919-  uint32_t index,
   1.920-  uint32_t *length
   1.921-);
   1.922-
   1.923-/**
   1.924- * Disable a certain capture within a query.
   1.925- *
   1.926- * This prevents the capture from being returned in matches, and also avoids
   1.927- * any resource usage associated with recording the capture. Currently, there
   1.928- * is no way to undo this.
   1.929- */
   1.930-void ts_query_disable_capture(TSQuery *self, const char *name, uint32_t length);
   1.931-
   1.932-/**
   1.933- * Disable a certain pattern within a query.
   1.934- *
   1.935- * This prevents the pattern from matching and removes most of the overhead
   1.936- * associated with the pattern. Currently, there is no way to undo this.
   1.937- */
   1.938-void ts_query_disable_pattern(TSQuery *self, uint32_t pattern_index);
   1.939-
   1.940-/**
   1.941- * Create a new cursor for executing a given query.
   1.942- *
   1.943- * The cursor stores the state that is needed to iteratively search
   1.944- * for matches. To use the query cursor, first call [`ts_query_cursor_exec`]
   1.945- * to start running a given query on a given syntax node. Then, there are
   1.946- * two options for consuming the results of the query:
   1.947- * 1. Repeatedly call [`ts_query_cursor_next_match`] to iterate over all of the
   1.948- *    *matches* in the order that they were found. Each match contains the
   1.949- *    index of the pattern that matched, and an array of captures. Because
   1.950- *    multiple patterns can match the same set of nodes, one match may contain
   1.951- *    captures that appear *before* some of the captures from a previous match.
   1.952- * 2. Repeatedly call [`ts_query_cursor_next_capture`] to iterate over all of the
   1.953- *    individual *captures* in the order that they appear. This is useful if
   1.954- *    don't care about which pattern matched, and just want a single ordered
   1.955- *    sequence of captures.
   1.956- *
   1.957- * If you don't care about consuming all of the results, you can stop calling
   1.958- * [`ts_query_cursor_next_match`] or [`ts_query_cursor_next_capture`] at any point.
   1.959- *  You can then start executing another query on another node by calling
   1.960- *  [`ts_query_cursor_exec`] again.
   1.961- */
   1.962-TSQueryCursor *ts_query_cursor_new(void);
   1.963-
   1.964-/**
   1.965- * Delete a query cursor, freeing all of the memory that it used.
   1.966- */
   1.967-void ts_query_cursor_delete(TSQueryCursor *self);
   1.968-
   1.969-/**
   1.970- * Start running a given query on a given node.
   1.971- */
   1.972-void ts_query_cursor_exec(TSQueryCursor *self, const TSQuery *query, TSNode node);
   1.973-
   1.974-/**
   1.975- * Manage the maximum number of in-progress matches allowed by this query
   1.976- * cursor.
   1.977- *
   1.978- * Query cursors have an optional maximum capacity for storing lists of
   1.979- * in-progress captures. If this capacity is exceeded, then the
   1.980- * earliest-starting match will silently be dropped to make room for further
   1.981- * matches. This maximum capacity is optional — by default, query cursors allow
   1.982- * any number of pending matches, dynamically allocating new space for them as
   1.983- * needed as the query is executed.
   1.984- */
   1.985-bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self);
   1.986-uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self);
   1.987-void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit);
   1.988-
   1.989-/**
   1.990- * Set the range of bytes or (row, column) positions in which the query
   1.991- * will be executed.
   1.992- */
   1.993-void ts_query_cursor_set_byte_range(TSQueryCursor *self, uint32_t start_byte, uint32_t end_byte);
   1.994-void ts_query_cursor_set_point_range(TSQueryCursor *self, TSPoint start_point, TSPoint end_point);
   1.995-
   1.996-/**
   1.997- * Advance to the next match of the currently running query.
   1.998- *
   1.999- * If there is a match, write it to `*match` and return `true`.
  1.1000- * Otherwise, return `false`.
  1.1001- */
  1.1002-bool ts_query_cursor_next_match(TSQueryCursor *self, TSQueryMatch *match);
  1.1003-void ts_query_cursor_remove_match(TSQueryCursor *self, uint32_t match_id);
  1.1004-
  1.1005-/**
  1.1006- * Advance to the next capture of the currently running query.
  1.1007- *
  1.1008- * If there is a capture, write its match to `*match` and its index within
  1.1009- * the matche's capture list to `*capture_index`. Otherwise, return `false`.
  1.1010- */
  1.1011-bool ts_query_cursor_next_capture(
  1.1012-  TSQueryCursor *self,
  1.1013-  TSQueryMatch *match,
  1.1014-  uint32_t *capture_index
  1.1015-);
  1.1016-
  1.1017-/**
  1.1018- * Set the maximum start depth for a query cursor.
  1.1019- *
  1.1020- * This prevents cursors from exploring children nodes at a certain depth.
  1.1021- * Note if a pattern includes many children, then they will still be checked.
  1.1022- *
  1.1023- * The zero max start depth value can be used as a special behavior and
  1.1024- * it helps to destructure a subtree by staying on a node and using captures
  1.1025- * for interested parts. Note that the zero max start depth only limit a search
  1.1026- * depth for a pattern's root node but other nodes that are parts of the pattern
  1.1027- * may be searched at any depth what defined by the pattern structure.
  1.1028- *
  1.1029- * Set to `UINT32_MAX` to remove the maximum start depth.
  1.1030- */
  1.1031-void ts_query_cursor_set_max_start_depth(TSQueryCursor *self, uint32_t max_start_depth);
  1.1032-
  1.1033-/**********************/
  1.1034-/* Section - Language */
  1.1035-/**********************/
  1.1036-
  1.1037-/**
  1.1038- * Get another reference to the given language.
  1.1039- */
  1.1040-const TSLanguage *ts_language_copy(const TSLanguage *self);
  1.1041-
  1.1042-/**
  1.1043- * Free any dynamically-allocated resources for this language, if
  1.1044- * this is the last reference.
  1.1045- */
  1.1046-void ts_language_delete(const TSLanguage *self);
  1.1047-
  1.1048-/**
  1.1049- * Get the number of distinct node types in the language.
  1.1050- */
  1.1051-uint32_t ts_language_symbol_count(const TSLanguage *self);
  1.1052-
  1.1053-/**
  1.1054- * Get the number of valid states in this language.
  1.1055-*/
  1.1056-uint32_t ts_language_state_count(const TSLanguage *self);
  1.1057-
  1.1058-/**
  1.1059- * Get a node type string for the given numerical id.
  1.1060- */
  1.1061-const char *ts_language_symbol_name(const TSLanguage *self, TSSymbol symbol);
  1.1062-
  1.1063-/**
  1.1064- * Get the numerical id for the given node type string.
  1.1065- */
  1.1066-TSSymbol ts_language_symbol_for_name(
  1.1067-  const TSLanguage *self,
  1.1068-  const char *string,
  1.1069-  uint32_t length,
  1.1070-  bool is_named
  1.1071-);
  1.1072-
  1.1073-/**
  1.1074- * Get the number of distinct field names in the language.
  1.1075- */
  1.1076-uint32_t ts_language_field_count(const TSLanguage *self);
  1.1077-
  1.1078-/**
  1.1079- * Get the field name string for the given numerical id.
  1.1080- */
  1.1081-const char *ts_language_field_name_for_id(const TSLanguage *self, TSFieldId id);
  1.1082-
  1.1083-/**
  1.1084- * Get the numerical id for the given field name string.
  1.1085- */
  1.1086-TSFieldId ts_language_field_id_for_name(const TSLanguage *self, const char *name, uint32_t name_length);
  1.1087-
  1.1088-/**
  1.1089- * Check whether the given node type id belongs to named nodes, anonymous nodes,
  1.1090- * or a hidden nodes.
  1.1091- *
  1.1092- * See also [`ts_node_is_named`]. Hidden nodes are never returned from the API.
  1.1093- */
  1.1094-TSSymbolType ts_language_symbol_type(const TSLanguage *self, TSSymbol symbol);
  1.1095-
  1.1096-/**
  1.1097- * Get the ABI version number for this language. This version number is used
  1.1098- * to ensure that languages were generated by a compatible version of
  1.1099- * Tree-sitter.
  1.1100- *
  1.1101- * See also [`ts_parser_set_language`].
  1.1102- */
  1.1103-uint32_t ts_language_version(const TSLanguage *self);
  1.1104-
  1.1105-/**
  1.1106- * Get the next parse state. Combine this with lookahead iterators to generate
  1.1107- * completion suggestions or valid symbols in error nodes. Use
  1.1108- * [`ts_node_grammar_symbol`] for valid symbols.
  1.1109-*/
  1.1110-TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol);
  1.1111-
  1.1112-/********************************/
  1.1113-/* Section - Lookahead Iterator */
  1.1114-/********************************/
  1.1115-
  1.1116-/**
  1.1117- * Create a new lookahead iterator for the given language and parse state.
  1.1118- *
  1.1119- * This returns `NULL` if state is invalid for the language.
  1.1120- *
  1.1121- * Repeatedly using [`ts_lookahead_iterator_next`] and
  1.1122- * [`ts_lookahead_iterator_current_symbol`] will generate valid symbols in the
  1.1123- * given parse state. Newly created lookahead iterators will contain the `ERROR`
  1.1124- * symbol.
  1.1125- *
  1.1126- * Lookahead iterators can be useful to generate suggestions and improve syntax
  1.1127- * error diagnostics. To get symbols valid in an ERROR node, use the lookahead
  1.1128- * iterator on its first leaf node state. For `MISSING` nodes, a lookahead
  1.1129- * iterator created on the previous non-extra leaf node may be appropriate.
  1.1130-*/
  1.1131-TSLookaheadIterator *ts_lookahead_iterator_new(const TSLanguage *self, TSStateId state);
  1.1132-
  1.1133-/**
  1.1134- * Delete a lookahead iterator freeing all the memory used.
  1.1135-*/
  1.1136-void ts_lookahead_iterator_delete(TSLookaheadIterator *self);
  1.1137-
  1.1138-/**
  1.1139- * Reset the lookahead iterator to another state.
  1.1140- *
  1.1141- * This returns `true` if the iterator was reset to the given state and `false`
  1.1142- * otherwise.
  1.1143-*/
  1.1144-bool ts_lookahead_iterator_reset_state(TSLookaheadIterator *self, TSStateId state);
  1.1145-
  1.1146-/**
  1.1147- * Reset the lookahead iterator.
  1.1148- *
  1.1149- * This returns `true` if the language was set successfully and `false`
  1.1150- * otherwise.
  1.1151-*/
  1.1152-bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const TSLanguage *language, TSStateId state);
  1.1153-
  1.1154-/**
  1.1155- * Get the current language of the lookahead iterator.
  1.1156-*/
  1.1157-const TSLanguage *ts_lookahead_iterator_language(const TSLookaheadIterator *self);
  1.1158-
  1.1159-/**
  1.1160- * Advance the lookahead iterator to the next symbol.
  1.1161- *
  1.1162- * This returns `true` if there is a new symbol and `false` otherwise.
  1.1163-*/
  1.1164-bool ts_lookahead_iterator_next(TSLookaheadIterator *self);
  1.1165-
  1.1166-/**
  1.1167- * Get the current symbol of the lookahead iterator;
  1.1168-*/
  1.1169-TSSymbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self);
  1.1170-
  1.1171-/**
  1.1172- * Get the current symbol type of the lookahead iterator as a null terminated
  1.1173- * string.
  1.1174-*/
  1.1175-const char *ts_lookahead_iterator_current_symbol_name(const TSLookaheadIterator *self);
  1.1176-
  1.1177-/*************************************/
  1.1178-/* Section - WebAssembly Integration */
  1.1179-/************************************/
  1.1180-
  1.1181-typedef struct wasm_engine_t TSWasmEngine;
  1.1182-typedef struct TSWasmStore TSWasmStore;
  1.1183-
  1.1184-typedef enum {
  1.1185-  TSWasmErrorKindNone = 0,
  1.1186-  TSWasmErrorKindParse,
  1.1187-  TSWasmErrorKindCompile,
  1.1188-  TSWasmErrorKindInstantiate,
  1.1189-  TSWasmErrorKindAllocate,
  1.1190-} TSWasmErrorKind;
  1.1191-
  1.1192-typedef struct {
  1.1193-  TSWasmErrorKind kind;
  1.1194-  char *message;
  1.1195-} TSWasmError;
  1.1196-
  1.1197-/**
  1.1198- * Create a Wasm store.
  1.1199- */
  1.1200-TSWasmStore *ts_wasm_store_new(
  1.1201-  TSWasmEngine *engine,
  1.1202-  TSWasmError *error
  1.1203-);
  1.1204-
  1.1205-/**
  1.1206- * Free the memory associated with the given Wasm store.
  1.1207- */
  1.1208-void ts_wasm_store_delete(TSWasmStore *);
  1.1209-
  1.1210-/**
  1.1211- * Create a language from a buffer of Wasm. The resulting language behaves
  1.1212- * like any other Tree-sitter language, except that in order to use it with
  1.1213- * a parser, that parser must have a Wasm store. Note that the language
  1.1214- * can be used with any Wasm store, it doesn't need to be the same store that
  1.1215- * was used to originally load it.
  1.1216- */
  1.1217-const TSLanguage *ts_wasm_store_load_language(
  1.1218-  TSWasmStore *,
  1.1219-  const char *name,
  1.1220-  const char *wasm,
  1.1221-  uint32_t wasm_len,
  1.1222-  TSWasmError *error
  1.1223-);
  1.1224-
  1.1225-/**
  1.1226- * Get the number of languages instantiated in the given wasm store.
  1.1227- */
  1.1228-size_t ts_wasm_store_language_count(const TSWasmStore *);
  1.1229-
  1.1230-/**
  1.1231- * Check if the language came from a Wasm module. If so, then in order to use
  1.1232- * this language with a Parser, that parser must have a Wasm store assigned.
  1.1233- */
  1.1234-bool ts_language_is_wasm(const TSLanguage *);
  1.1235-
  1.1236-/**
  1.1237- * Assign the given Wasm store to the parser. A parser must have a Wasm store
  1.1238- * in order to use Wasm languages.
  1.1239- */
  1.1240-void ts_parser_set_wasm_store(TSParser *, TSWasmStore *);
  1.1241-
  1.1242-/**
  1.1243- * Remove the parser's current Wasm store and return it. This returns NULL if
  1.1244- * the parser doesn't have a Wasm store.
  1.1245- */
  1.1246-TSWasmStore *ts_parser_take_wasm_store(TSParser *);
  1.1247-
  1.1248-/**********************************/
  1.1249-/* Section - Global Configuration */
  1.1250-/**********************************/
  1.1251-
  1.1252-/**
  1.1253- * Set the allocation functions used by the library.
  1.1254- *
  1.1255- * By default, Tree-sitter uses the standard libc allocation functions,
  1.1256- * but aborts the process when an allocation fails. This function lets
  1.1257- * you supply alternative allocation functions at runtime.
  1.1258- *
  1.1259- * If you pass `NULL` for any parameter, Tree-sitter will switch back to
  1.1260- * its default implementation of that function.
  1.1261- *
  1.1262- * If you call this function after the library has already been used, then
  1.1263- * you must ensure that either:
  1.1264- *  1. All the existing objects have been freed.
  1.1265- *  2. The new allocator shares its state with the old one, so it is capable
  1.1266- *     of freeing memory that was allocated by the old allocator.
  1.1267- */
  1.1268-void ts_set_allocator(
  1.1269-  void *(*new_malloc)(size_t),
  1.1270-        void *(*new_calloc)(size_t, size_t),
  1.1271-        void *(*new_realloc)(void *, size_t),
  1.1272-        void (*new_free)(void *)
  1.1273-);
  1.1274-
  1.1275-#ifdef __cplusplus
  1.1276-}
  1.1277-#endif
  1.1278-
  1.1279-#ifndef TREE_SITTER_HIDE_SYMBOLS
  1.1280-#if defined(__GNUC__) || defined(__clang__)
  1.1281-#pragma GCC visibility pop
  1.1282-#endif
  1.1283-#endif
  1.1284-
  1.1285-#endif  // TREE_SITTER_API_H_