
Org Mode Manual
Release 5.04

by Carsten Dominik

This manual is for Org-mode (version 5.04).
Copyright c© 2004, 2005, 2006, 2007 Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Table of Contents

1 Introduction . 1
1.1 Summary . 1
1.2 Installation . 2
1.3 Activation . 2
1.4 Feedback . 3

2 Document Structure . 4
2.1 Outlines . 4
2.2 Headlines . 4
2.3 Visibility cycling . 4
2.4 Motion . 5
2.5 Structure editing . 6
2.6 Archiving . 7

2.6.1 The ARCHIVE tag . 7
2.6.2 Moving subtrees . 7

2.7 Sparse trees . 8
2.8 Plain lists . 9
2.9 Drawers . 10
2.10 The Orgstruct minor mode . 11

3 Tables . 12
3.1 The built-in table editor . 12
3.2 Narrow columns . 14
3.3 Column groups . 15
3.4 The Orgtbl minor mode . 15
3.5 The spreadsheet . 16

3.5.1 References . 16
3.5.2 Formula syntax for Calc . 18
3.5.3 Emacs Lisp forms as formulas 18
3.5.4 Field formulas . 19
3.5.5 Column formulas . 19
3.5.6 Editing and Debugging formulas 20
3.5.7 Updating the Table . 21
3.5.8 Advanced features . 22

ii

4 Hyperlinks . 24
4.1 Link format . 24
4.2 Internal links . 24

4.2.1 Radio targets . 25
4.3 External links . 25
4.4 Handling links . 26
4.5 Link abbreviations . 27
4.6 Search options in file links . 28
4.7 Custom Searches . 29
4.8 Remember . 29

4.8.1 Setting up remember . 29
4.8.2 Remember templates. 30
4.8.3 Storing notes . 31

5 TODO items . 33
5.1 Basic TODO functionality . 33
5.2 Extended use of TODO keywords. 33

5.2.1 TODO keywords as workflow states 34
5.2.2 TODO keywords as types . 34
5.2.3 Multiple keyword sets in one file 35
5.2.4 Setting up keywords for individual files 35

5.3 Priorities . 36
5.4 Breaking tasks down into subtasks . 36
5.5 Checkboxes . 36

6 Tags . 38
6.1 Tag inheritance . 38
6.2 Setting tags . 38
6.3 Tag searches . 39

7 Properties and Columns 41
7.1 Property Syntax . 41
7.2 Special Properties . 42
7.3 Property searches . 42
7.4 Column View . 42

7.4.1 Defining Columns. 42
7.4.1.1 Scope of column definitions 43
7.4.1.2 Column attributes . 43

7.4.2 Using Column View . 44
7.5 The Property API . 44

iii

8 Timestamps . 46
8.1 Time stamps, deadlines and scheduling. 46
8.2 Creating timestamps . 46

8.2.1 The date/time prompt . 47
8.2.2 Custom time format . 48

8.3 Deadlines and Scheduling . 49
8.3.1 Inserting deadline/schedule . 49
8.3.2 Repeated Tasks. 49

8.4 Progress Logging . 50
8.4.1 Closing items . 50
8.4.2 Tracking TODO state changes 51
8.4.3 Clocking work time . 51

9 Agenda Views . 53
9.1 Agenda files . 53
9.2 The agenda dispatcher . 53
9.3 The built-in agenda views . 54

9.3.1 The weekly/daily agenda . 54
9.3.2 The global TODO list. 55
9.3.3 Matching Tags and Properties 56
9.3.4 Timeline for a single file . 56
9.3.5 Stuck projects . 57

9.4 Presentation and sorting . 57
9.4.1 Categories . 57
9.4.2 Time-of-Day Specifications . 58
9.4.3 Sorting of agenda items . 58

9.5 Commands in the agenda buffer . 59
9.6 Custom agenda views . 62

9.6.1 Storing searches . 62
9.6.2 Block agenda . 62
9.6.3 Setting Options for custom commands. 63
9.6.4 Exporting Agenda Views . 64
9.6.5 Extracting Agenda Information for other programs

. 66

10 Embedded LaTeX . 68
10.1 Math symbols . 68
10.2 Subscripts and Superscripts . 68
10.3 LaTeX fragments . 68
10.4 Processing LaTeX fragments . 69
10.5 Using CDLaTeX to enter math . 69

iv

11 Exporting . 71
11.1 ASCII export . 71
11.2 HTML export. 71

11.2.1 HTML export commands . 71
11.2.2 Quoting HTML tags . 72
11.2.3 Links . 72
11.2.4 Images . 72
11.2.5 CSS support . 73

11.3 XOXO export . 73
11.4 iCalendar export . 74
11.5 Text interpretation by the exporter . 74

11.5.1 Comment lines . 74
11.5.2 Text before the first headline 74
11.5.3 Footnotes . 75
11.5.4 Enhancing text for export . 75
11.5.5 Export options . 76

12 Publishing . 77
12.1 Configuration . 77

12.1.1 The variable org-publish-project-alist 77
12.1.2 Sources and destinations for files 77
12.1.3 Selecting files . 77
12.1.4 Publishing Action . 78
12.1.5 Options for the HTML exporter 78
12.1.6 Links between published files 79
12.1.7 Project page index . 79

12.2 Sample configuration . 80
12.2.1 Example: simple publishing configuration. 80
12.2.2 Example: complex publishing configuration 80

12.3 Triggering publication . 81

13 Miscellaneous . 82
13.1 Completion . 82
13.2 Customization . 82
13.3 Summary of in-buffer settings . 82
13.4 The very busy C-c C-c key . 84
13.5 A cleaner outline view . 85
13.6 Using org-mode on a tty . 86
13.7 Interaction with other packages . 87

13.7.1 Packages that Org-mode cooperates with 87
13.7.2 Packages that lead to conflicts with Org-mode . . 88

13.8 Bugs . 89

v

Appendix A Extensions, Hooks and Hacking . . 90
A.1 Third-party extensions for Org-mode . 90
A.2 Tables in arbitrary syntax . 91

A.2.1 Radio tables . 91
A.2.2 A LaTeX example . 92
A.2.3 Translator functions . 93

A.3 Dynamic blocks . 94
A.4 Special Agenda Views . 95
A.5 Using the property API . 96

Appendix B History and Acknowledgments . . . 97

Index . 99

Key Index . 103

Chapter 1: Introduction 1

1 Introduction

1.1 Summary

Org-mode is a mode for keeping notes, maintaining TODO lists, and doing project
planning with a fast and effective plain-text system.

Org-mode develops organizational tasks around NOTES files that contain lists or in-
formation about projects as plain text. Org-mode is implemented on top of outline-mode,
which makes it possible to keep the content of large files well structured. Visibility cycling
and structure editing help to work with the tree. Tables are easily created with a built-in
table editor. Org-mode supports TODO items, deadlines, time stamps, and scheduling. It
dynamically compiles entries into an agenda that utilizes and smoothly integrates much of
the Emacs calendar and diary. Plain text URL-like links connect to websites, emails, Usenet
messages, BBDB entries, and any files related to the projects. For printing and sharing of
notes, an Org-mode file can be exported as a structured ASCII file, as HTML, or (todo and
agenda items only) as an iCalendar file. It can also serve as a publishing tool for a set of
linked webpages.

An important design aspect that distinguishes Org-mode from for example Planner/Muse
is that it encourages to store every piece of information only once. In Planner, you have
project pages, day pages and possibly other files, duplicating some information such as
tasks. In Org-mode, you only have notes files. In your notes you mark entries as tasks,
label them with tags and timestamps. All necessary lists like a schedule for the day, the
agenda for a meeting, tasks lists selected by tags etc are created dynamically when you need
them.

Org-mode keeps simple things simple. When first fired up, it should feel like a straightfor-
ward, easy to use outliner. Complexity is not imposed, but a large amount of functionality
is available when you need it. Org-mode is a toolbox and can be used in different ways, for
example as:

• outline extension with visibility cycling and structure editing
• ASCII system and table editor for taking structured notes
• ASCII table editor with spreadsheet-like capabilities
• TODO list editor
• full agenda and planner with deadlines and work scheduling
• environment to implement David Allen’s GTD system
• a basic database application
• simple hypertext system, with HTML export
• publishing tool to create a set of interlinked webpages

Org-mode’s automatic, context sensitive table editor with spreadsheet capabilities can be
integrated into any major mode by activating the minor Orgtbl-mode. Using a translation
step, it can be used to maintain tables in arbitrary file types, for example in LaTeX. The
structure editing and list creation capabilities can be used outside Org-mode with the minor
Orgstruct-mode.

There is a website for Org-mode which provides links to the newest version of Org-mode,
as well as additional information, frequently asked questions (FAQ), links to tutorials etc.
This page is located at http://www.astro.uva.nl/~dominik/Tools/org/.

http://www.astro.uva.nl/~dominik/Tools/org/

Chapter 1: Introduction 2

1.2 Installation

Important: If Org-mode is part of the Emacs distribution or an XEmacs package, please
skip this section and go directly to Section 1.3 [Activation], page 2.

If you have downloaded Org-mode from the Web, you must take the following steps to
install it: Go into the Org-mode distribution directory and edit the top section of the file
‘Makefile’. You must set the name of the Emacs binary (likely either ‘emacs’ or ‘xemacs’),
and the paths to the directories where local Lisp and Info files are kept. If you don’t have
access to the system-wide directories, create your own two directories for these files, enter
them into the Makefile, and make sure Emacs finds the Lisp files by adding the following
line to ‘.emacs’:

(setq load-path (cons "~/path/to/lispdir" load-path))

XEmacs users now need to install the file ‘noutline.el’ from the ‘xemacs’ subdirectory
of the Org-mode distribution. Use the command:

make install-noutline

Now byte-compile and install the Lisp files with the shell commands:
make
make install

If you want to install the info documentation, use this command:
make install-info

Then add to ‘.emacs’:
;; This line only if org-mode is not part of the X/Emacs distribution.
(require ’org-install)

1.3 Activation

Important: If you use copy-and-paste to copy lisp code from the PDF documentation as
viewed by Acrobat reader to your .emacs file, the single quote character comes out incorrectly
and the code will not work. You need to fix the single quotes by hand, or copy from Info
documentation.

Add the following lines to your ‘.emacs’ file. The last two lines define global keys for
the commands org-store-link and org-agenda - please choose suitable keys yourself.

;; The following lines are always needed. Choose your own keys.
(add-to-list ’auto-mode-alist ’("\\.org\\’" . org-mode))
(define-key global-map "\C-cl" ’org-store-link)
(define-key global-map "\C-ca" ’org-agenda)

Furthermore, you must activate font-lock-mode in org-mode buffers, because significant
functionality depends on font-locking being active. You can do this with either one of the
following two lines (XEmacs user must use the second option):

(global-font-lock-mode 1) ; for all buffers
(add-hook ’org-mode-hook ’turn-on-font-lock) ; org-mode buffers only

With this setup, all files with extension ‘.org’ will be put into Org-mode. As an alter-
native, make the first line of a file look like this:

Chapter 1: Introduction 3

MY PROJECTS -*- mode: org; -*-

which will select Org-mode for this buffer no matter what the file’s name is. See also the
variable org-insert-mode-line-in-empty-file.

1.4 Feedback

If you find problems with Org-mode, or if you have questions, remarks, or ideas about
it, please contact the maintainer Carsten Dominik at dominik at science dot uva dot nl.

For bug reports, please provide as much information as possible, including the version
information of Emacs (C-h v emacs-version 〈RET〉) and Org-mode (C-h v org-version

〈RET〉), as well as the Org-mode related setup in ‘.emacs’. If an error occurs, a back-
trace can be very useful (see below on how to create one). Often a small example file helps,
along with clear information about:
1. What exactly did you do?
2. What did you expect to happen?
3. What happened instead?

Thank you for helping to improve this mode.

How to create a useful backtrace

If working with Org-mode produces an error with a message you don’t understand, you
may have hit a bug. The best way to report this is by providing, in addition to what was
mentioned above, a Backtrace. This is information from the built-in debugger about where
and how the error occurred. Here is how to produce a useful backtrace:
1. Start a fresh Emacs or XEmacs, and make sure that it will load the original Lisp code

in ‘org.el’ instead of the compiled version in ‘org.elc’. The backtrace contains much
more information if it is produced with uncompiled code. To do this, either rename
‘org.elc’ to something else before starting Emacs, or ask Emacs explicitly to load
‘org.el’ by using the command line

emacs -l /path/to/org.el

2. Go to the Options menu and select Enter Debugger on Error (XEmacs has this option
in the Troubleshooting sub-menu).

3. Do whatever you have to do to hit the error. Don’t forget to document the steps you
take.

4. When you hit the error, a ‘*Backtrace*’ buffer will appear on the screen. Save this
buffer to a file (for example using C-x C-w) and attach it to your bug report.

mailto:dominik at science dot uva dot nl

Chapter 2: Document Structure 4

2 Document Structure

Org-mode is based on outline mode and provides flexible commands to edit the structure
of the document.

2.1 Outlines

Org-mode is implemented on top of outline-mode. Outlines allow to organize a document
in a hierarchical structure, which (at least for me) is the best representation of notes and
thoughts. Overview over this structure is achieved by folding (hiding) large parts of the
document to show only the general document structure and the parts currently being worked
on. Org-mode greatly simplifies the use of outlines by compressing the entire show/hide
functionality into a single command org-cycle, which is bound to the 〈TAB〉 key.

2.2 Headlines

Headlines define the structure of an outline tree. The headlines in Org-mode start with
one or more stars, on the left margin1. For example:

* Top level headline
** Second level
*** 3rd level

some text
*** 3rd level

more text

* Another top level headline

Some people find the many stars too noisy and would prefer an outline that has whitespace
followed by a single star as headline starters. Section 13.5 [Clean view], page 85 describes
a setup to realize this.

An empty line after the end of a subtree is considered part of it and will be hidden when
the subtree is folded. However, if you leave at least two empty lines, one empty line will
remain visible after folding the subtree, in order to structure the collapsed view. See the
variable org-cycle-separator-lines for modifying this behavior.

2.3 Visibility cycling

Outlines make it possible to hide parts of the text in the buffer. Org-mode uses just two
commands, bound to 〈TAB〉 and S-〈TAB〉 to change the visibility in the buffer.

〈TAB〉 Subtree cycling : Rotate current subtree among the states
,-> FOLDED -> CHILDREN -> SUBTREE --.
’-----------------------------------’

1 See the variable org-special-ctrl-a/e to configure special behavior of C-a and C-e in headlines.

Chapter 2: Document Structure 5

The cursor must be on a headline for this to work2. When the cursor is at the
beginning of the buffer and the first line is not a headline, then 〈TAB〉 actually
runs global cycling (see below)3. Also when called with a prefix argument (C-u
〈TAB〉), global cycling is invoked.

S-〈TAB〉
C-u 〈TAB〉 Global cycling : Rotate the entire buffer among the states

,-> OVERVIEW -> CONTENTS -> SHOW ALL --.
’--------------------------------------’

When S-〈TAB〉 is called with a numerical prefix N, the CONTENTS view up to
headlines of level N will be shown. Note that inside tables, S-〈TAB〉 jumps to
the previous field.

C-c C-a Show all.

C-c C-r Reveal context around point, showing the current entry, the following heading
and the hierarchy above. Useful for working near a location exposed by a sparse
tree command (see Section 2.7 [Sparse trees], page 8) or an agenda command
(see Section 9.5 [Agenda commands], page 59). With prefix arg show, on each
level, all sibling headings.

C-c C-x b Show the current subtree in an indirect buffer4. With numerical prefix ARG,
go up to this level and then take that tree. If ARG is negative, go up that many
levels. With C-u prefix, do not remove the previously used indirect buffer.

When Emacs first visits an Org-mode file, the global state is set to OVERVIEW, i.e.
only the top level headlines are visible. This can be configured through the variable org-
startup-folded, or on a per-file basis by adding one of the following lines anywhere in the
buffer:

#+STARTUP: overview
#+STARTUP: content
#+STARTUP: showall

2.4 Motion

The following commands jump to other headlines in the buffer.

C-c C-n Next heading.

C-c C-p Previous heading.

C-c C-f Next heading same level.

C-c C-b Previous heading same level.

C-c C-u Backward to higher level heading.

2 see, however, the option org-cycle-emulate-tab.
3 see the option org-cycle-global-at-bob.
4 The indirect buffer (see the Emacs manual for more information about indirect buffers) will contain the

entire buffer, but will be narrowed to the current tree. Editing the indirect buffer will also change the
original buffer, but without affecting visibility in that buffer.

Chapter 2: Document Structure 6

C-c C-j Jump to a different place without changing the current outline visibility. Shows
the document structure in a temporary buffer, where you can use the following
keys to find your destination:

〈TAB〉 Cycle visibility.
〈down〉 / 〈up〉 Next/previous visible headline.
n / p Next/previous visible headline.
f / b Next/previous headline same level.
u One level up.
0-9 Digit argument.
〈RET〉 Select this location.

2.5 Structure editing

M-〈RET〉 Insert new heading with same level as current. If the cursor is in a plain list
item, a new item is created (see Section 2.8 [Plain lists], page 9). To force
creation of a new headline, use a prefix arg, or first press 〈RET〉 to get to the
beginning of the next line. When this command is used in the middle of a
line, the line is split and the rest of the line becomes the new headline. If the
command is used at the beginning of a headline, the new headline is created
before the current line. If at the beginning of any other line, the content of that
line is made the new heading. If the command is used at the end of a folded
subtree (i.e. behind the ellipses at the end of a headline), then a headline like
the current one will be inserted after the end of the subtree.

M-S-〈RET〉 Insert new TODO entry with same level as current heading.

M-〈left〉 Promote current heading by one level.

M-〈right〉 Demote current heading by one level.

M-S-〈left〉 Promote the current subtree by one level.

M-S-〈right〉 Demote the current subtree by one level.

M-S-〈up〉 Move subtree up (swap with previous subtree of same level).

M-S-〈down〉 Move subtree down (swap with next subtree of same level).

C-c C-x C-w

C-c C-x C-k

Kill subtree, i.e. remove it from buffer but save in kill ring.

C-c C-x M-w

Copy subtree to kill ring.

C-c C-x C-y

Yank subtree from kill ring. This does modify the level of the subtree to make
sure the tree fits in nicely at the yank position. The yank level can also be
specified with a prefix arg, or by yanking after a headline marker like ‘****’.

C-c ^ Sort same-level entries. When there is an active region, all entries in the region
will be sorted. Otherwise the children of the current headline are sorted. The

Chapter 2: Document Structure 7

command prompts for the sorting method, which can be alphabetically, numer-
ically, by time (using the first time stamp in each entry), and each of these in
reverse order. With a C-u prefix, sorting will be case-sensitive. With two C-u

C-u prefixes, duplicate entries will also be removed.

When there is an active region (transient-mark-mode), promotion and demotion work
on all headlines in the region. To select a region of headlines, it is best to place both point
and mark at the beginning of a line, mark at the beginning of the first headline, and point
at the line just after the last headline to change. Note that when the cursor is inside a table
(see Chapter 3 [Tables], page 12), the Meta-Cursor keys have different functionality.

2.6 Archiving

When a project represented by a (sub)tree is finished, you may want to move the tree
out of the way and to stop it from contributing to the agenda. Org-mode knows two ways
of archiving. You can mark a tree with the ARCHIVE tag, or you can move an entire
(sub)tree to a different location.

2.6.1 The ARCHIVE tag

A headline that is marked with the ARCHIVE tag (see Chapter 6 [Tags], page 38) stays
at its location in the outline tree, but behaves in the following way:
− It does not open when you attempt to do so with a visibility cycling command (see

Section 2.3 [Visibility cycling], page 4). You can force cycling archived subtrees with C-

〈TAB〉, or by setting the option org-cycle-open-archived-trees. Also normal outline
commands like show-all will open archived subtrees.

− During sparse tree construction (see Section 2.7 [Sparse trees], page 8), matches in
archived subtrees are not exposed, unless you configure the option org-sparse-tree-
open-archived-trees.

− During agenda view construction (see Chapter 9 [Agenda views], page 53), the con-
tent of archived trees is ignored unless you configure the option org-agenda-skip-
archived-trees.

− Archived trees are not exported (see Chapter 11 [Exporting], page 71), only the headline
is. Configure the details using the variable org-export-with-archived-trees.

The following commands help managing the ARCHIVE tag:

C-c C-x C-a

Toggle the ARCHIVE tag for the current headline. When the tag is set, the
headline changes to a shadowish face, and the subtree below it is hidden.

C-u C-c C-x C-a

Check if any direct children of the current headline should be archived. To do
this, each subtree is checked for open TODO entries. If none are found, the
command offers to set the ARCHIVE tag for the child. If the cursor is not on
a headline when this command is invoked, the level 1 trees will be checked.

C-TAB Cycle a tree even if it is tagged with ARCHIVE.

Chapter 2: Document Structure 8

2.6.2 Moving subtrees

Once an entire project is finished, you may want to move it to a different location, either
in the current file, or even in a different file, the archive file.

C-c C-x C-s

Archive the subtree starting at the cursor position to the location given by
org-archive-location.

C-u C-c C-x C-s

Check if any direct children of the current headline could be moved to the
archive. To do this, each subtree is checked for open TODO entries. If none
are found, the command offers to move it to the archive location. If the cursor
is not on a headline when this command is invoked, the level 1 trees will be
checked.

The default archive location is a file in the same directory as the current file, with
the name derived by appending ‘_archive’ to the current file name. For information and
examples on how to change this, see the documentation string of the variable org-archive-
location. There is also an in-buffer option for setting this variable, for example

#+ARCHIVE: %s_done::

You may have several such lines in the buffer, they will then be valid for the entries following
the line (the first will also apply to any text before it).

2.7 Sparse trees

An important feature of Org-mode is the ability to construct sparse trees for selected
information in an outline tree. A sparse tree means that the entire document is folded
as much as possible, but the selected information is made visible along with the headline
structure above it5. Just try it out and you will see immediately how it works.

Org-mode contains several commands creating such trees. The most basic one is org-
occur:

C-c / Occur. Prompts for a regexp and shows a sparse tree with all matches. If the
match is in a headline, the headline is made visible. If the match is in the body
of an entry, headline and body are made visible. In order to provide minimal
context, also the full hierarchy of headlines above the match is shown, as well as
the headline following the match. Each match is also highlighted; the highlights
disappear when the buffer is changes an editing command, or by pressing C-c

C-c. When called with a C-u prefix argument, previous highlights are kept, so
several calls to this command can be stacked.

For frequently used sparse trees of specific search strings, you can use the variable org-
agenda-custom-commands to define fast keyboard access to specific sparse trees. These
commands will then be accessible through the agenda dispatcher (see Section 9.2 [Agenda
dispatcher], page 54). For example:

5 See also the variables org-show-hierarchy-above, org-show-following-heading, and
org-show-siblings for detailed control on how much context is shown around each match.

Chapter 2: Document Structure 9

(setq org-agenda-custom-commands
’(("f" occur-tree "FIXME")))

will define the key C-c a f as a shortcut for creating a sparse tree matching the string
‘FIXME’.

Other commands use sparse trees as well. For example C-c C-v creates a sparse TODO
tree (see Section 5.1 [TODO basics], page 33).

To print a sparse tree, you can use the Emacs command ps-print-buffer-with-faces
which does not print invisible parts of the document6. Or you can use the command C-c

C-e v to export only the visible part of the document and print the resulting file.

2.8 Plain lists

Within an entry of the outline tree, hand-formatted lists can provide additional structure.
They also provide a way to create lists of checkboxes (see Section 5.5 [Checkboxes], page 36).
Org-mode supports editing such lists, and the HTML exporter (see Chapter 11 [Exporting],
page 71) does parse and format them.

Org-mode knows ordered and unordered lists. Unordered list items start with ‘-’, ‘+’, or
‘*’7 as bullets. Ordered list items start with ‘1.’ or ‘1)’. Items belonging to the same list
must have the same indentation on the first line. In particular, if an ordered list reaches
number ‘10.’, then the 2–digit numbers must be written left-aligned with the other numbers
in the list. Indentation also determines the end of a list item. It ends before the next line
that is indented like the bullet/number, or less. Empty lines are part of the previous item,
so you can have several paragraphs in one item. If you would like an empty line to terminate
all currently open plain lists, configure the variable org-empty-line-terminates-plain-
lists. Here is an example:

** Lord of the Rings
My favorite scenes are (in this order)
1. The attack of the Rohirrim
2. Eowyns fight with the witch king

+ this was already my favorite scene in the book
+ I really like Miranda Otto.

3. Peter Jackson being shot by Legolas
- on DVD only
He makes a really funny face when it happens.

But in the end, not individual scenes matter but the film as a whole.

Org-mode supports these lists by tuning filling and wrapping commands to deal with
them correctly8.

6 This does not work under XEmacs, because XEmacs uses selective display for outlining, not text
properties.

7 When using ‘*’ as a bullet, lines must be indented or they will be seen as top-level headlines. Also, when
you are hiding leading stars to get a clean outline view, plain list items starting with a star are visually
indistinguishable from true headlines. In short: even though ‘*’ is supported, it may be better not to
use it for plain list items.

8 Org-mode only changes the filling settings for Emacs. For XEmacs, you should use Kyle E. Jones’
‘filladapt.el’. To turn this on, put into ‘.emacs’: (require ’filladapt)

Chapter 2: Document Structure 10

The following commands act on items when the cursor is in the first line of an item (the
line with the bullet or number).

〈TAB〉 Items can be folded just like headline levels if you set the variable org-cycle-
include-plain-lists. The level of an item is then given by the indentation
of the bullet/number. Items are always subordinate to real headlines, however;
the hierarchies remain completely separated.
If org-cycle-include-plain-lists has not been set, 〈TAB〉 fixes the indenta-
tion of the curent line in a heuristic way.

M-〈RET〉 Insert new item at current level. With prefix arg, force a new heading (see
Section 2.5 [Structure editing], page 6). If this command is used in the middle
of a line, the line is split and the rest of the line becomes the new item. If this
command is executed in the whitespace before a bullet or number, the new item
is created before the current item. If the command is executed in the white
space before the text that is part of an item but does not contain the bullet, a
bullet is added to the current line.

M-S-〈RET〉 Insert a new item with a checkbox (see Section 5.5 [Checkboxes], page 36).

S-〈up〉
S-〈down〉 Jump to the previous/next item in the current list.

M-S-〈up〉
M-S-〈down〉 Move the item including subitems up/down (swap with previous/next item of

same indentation). If the list is ordered, renumbering is automatic.

M-S-〈left〉
M-S-〈right〉 Decrease/increase the indentation of the item, including subitems. Initially, the

item tree is selected based on current indentation. When these commands are
executed several times in direct succession, the initially selected region is used,
even if the new indentation would imply a different hierarchy. To use the new
hierarchy, break the command chain with a cursor motion or so.

C-c C-c If there is a checkbox (see Section 5.5 [Checkboxes], page 36) in the item line,
toggle the state of the checkbox. If not, make this command makes sure that
all the items on this list level use the same bullet. Furthermore, if this is an
ordered list, make sure the numbering is ok.

C-c - Cycle the entire list level through the different itemize/enumerate bullets (‘-’,
‘+’, ‘*’, ‘1.’, ‘1)’). With prefix arg, select the nth bullet from this list.

2.9 Drawers

Sometimes you want to keep information associated with an entry, but you normally
don’t want to see it. For this, Org-mode has drawers. Drawers need to be configured with
the variable org-drawers, and look like this:

** This is a headline
Still outside the drawer
:DRAWERNAME:

Chapter 2: Document Structure 11

This is inside the drawer.
:END:
After the drawer.

Visibility cycling (see Section 2.3 [Visibility cycling], page 4) on the headline will hide
and show the entry, but keep the drawer collapsed to a single line. In order to look inside
the drawer, you need to move the cursor to the drawer line and press 〈TAB〉 there. Org-mode
uses a drawer for storing properties (see Chapter 7 [Properties and columns], page 41).

2.10 The Orgstruct minor mode

If you like the intuitive way the Org-mode structure editing and list formatting works,
you might want to use these commands in other modes like text-mode or mail-mode as well.
The minor mode Orgstruct-mode makes this possible. You can always toggle the mode with
M-x orgstruct-mode. To turn it on by default, for example in mail mode, use

(add-hook ’mail-mode-hook ’turn-on-orgstruct)

When this mode is active and the cursor is on a line that looks to Org-mode like a
headline of the first line of a list item, most structure editing commands will work, even if
the same keys normally have different functionality in the major mode you are using. If the
cursor is not in one of those special lines, Orgstruct-mode lurks silently in the shadow.

Chapter 3: Tables 12

3 Tables

Org-mode has a very fast and intuitive table editor built-in. Spreadsheet-like calculations
are supported in connection with the Emacs ‘calc’ package.

3.1 The built-in table editor

Org-mode makes it easy to format tables in plain ASCII. Any line with ‘|’ as the first
non-white character is considered part of a table. ‘|’ is also the column separator. A table
might look like this:

| Name | Phone | Age |
|-------+-------+-----|
| Peter | 1234 | 17 |
| Anna | 4321 | 25 |

A table is re-aligned automatically each time you press 〈TAB〉 or 〈RET〉 or C-c C-c inside
the table. 〈TAB〉 also moves to the next field (〈RET〉 to the next row) and creates new table
rows at the end of the table or before horizontal lines. The indentation of the table is set
by the first line. Any line starting with ‘|-’ is considered as a horizontal separator line
and will be expanded on the next re-align to span the whole table width. So, to create the
above table, you would only type

|Name|Phone|Age|
|-

and then press 〈TAB〉 to align the table and start filling in fields.
When typing text into a field, Org-mode treats 〈DEL〉, 〈Backspace〉, and all character keys in

a special way, so that inserting and deleting avoids shifting other fields. Also, when typing
immediately after the cursor was moved into a new field with 〈TAB〉, S-〈TAB〉 or 〈RET〉, the
field is automatically made blank. If this behavior is too unpredictable for you, configure
the variables org-enable-table-editor and org-table-auto-blank-field.

Creation and conversion
C-c | Convert the active region to table. If every line contains at least one TAB

character, the function assumes that the material is tab separated. If not, lines
are split at whitespace into fields. You can use a prefix argument to indicate
the minimum number of consecutive spaces required to identify a field separator
(default: just one).
If there is no active region, this command creates an empty Org-mode table.
But it’s easier just to start typing, like |Name|Phone|Age 〈RET〉 |- 〈TAB〉.

Re-aligning and field motion
C-c C-c Re-align the table without moving the cursor.

〈TAB〉 Re-align the table, move to the next field. Creates a new row if necessary.

S-〈TAB〉 Re-align, move to previous field.

〈RET〉 Re-align the table and move down to next row. Creates a new row if necessary.
At the beginning or end of a line, 〈RET〉 still does NEWLINE, so it can be used
to split a table.

Chapter 3: Tables 13

Column and row editing
M-〈left〉
M-〈right〉 Move the current column left/right.

M-S-〈left〉 Kill the current column.

M-S-〈right〉 Insert a new column to the left of the cursor position.

M-〈up〉
M-〈down〉 Move the current row up/down.

M-S-〈up〉 Kill the current row or horizontal line.

M-S-〈down〉 Insert a new row above (with arg: below) the current row.

C-c - Insert a horizontal line below current row. With prefix arg, the line is created
above the current line.

C-c ^ Sort the table lines in the region. The position of point indicates the column
to be used for sorting, and the range of lines is the range between the nearest
horizontal separator lines, or the entire table. If point is before the first column,
you will be prompted for the sorting column. If there is an active region, the
mark specifies the first line and the sorting column, while point should be in
the last line to be included into the sorting. The command prompts for the
sorting type (alphabetically, numerically, or by time). When called with a
prefix argument, alphabetic sorting will be case-sensitive.

Regions

C-c C-x M-w

Copy a rectangular region from a table to a special clipboard. Point and mark
determine edge fields of the rectangle. The process ignores horizontal separator
lines.

C-c C-x C-w

Copy a rectangular region from a table to a special clipboard, and blank all
fields in the rectangle. So this is the “cut” operation.

C-c C-x C-y

Paste a rectangular region into a table. The upper right corner ends up in the
current field. All involved fields will be overwritten. If the rectangle does not
fit into the present table, the table is enlarged as needed. The process ignores
horizontal separator lines.

C-c C-q Wrap several fields in a column like a paragraph. If there is an active region, and
both point and mark are in the same column, the text in the column is wrapped
to minimum width for the given number of lines. A prefix ARG may be used
to change the number of desired lines. If there is no region, the current field
is split at the cursor position and the text fragment to the right of the cursor
is prepended to the field one line down. If there is no region, but you specify
a prefix ARG, the current field is made blank, and the content is appended to
the field above.

Chapter 3: Tables 14

Calculations
C-c + Sum the numbers in the current column, or in the rectangle defined by the

active region. The result is shown in the echo area and can be inserted with
C-y.

S-〈RET〉 When current field is empty, copy from first non-empty field above. When
not empty, copy current field down to next row and move cursor along with
it. Depending on the variable org-table-copy-increment, integer field values
will be incremented during copy. This key is also used by CUA-mode (see
Section 13.7.1 [Cooperation], page 87).

Miscellaneous
C-c ‘ Edit the current field in a separate window. This is useful for fields that are

not fully visible (see Section 3.2 [Narrow columns], page 14). When called with
a C-u prefix, just make the full field visible, so that it can be edited in place.

C-c 〈TAB〉 This is an alias for C-u C-c ‘ to make the current field fully visible.

M-x org-table-import

Import a file as a table. The table should be TAB- or whitespace separated.
Useful, for example, to import an Excel table or data from a database, because
these programs generally can write TAB-separated text files. This command
works by inserting the file into the buffer and then converting the region to
a table. Any prefix argument is passed on to the converter, which uses it to
determine the separator.

C-c | Tables can also be imported by pasting tabular text into the org-mode buffer,
selecting the pasted text with C-x C-x and then using the C-c | command (see
above under Creation and conversion.

M-x org-table-export

Export the table as a TAB-separated file. Useful for data exchange with, for
example, Excel or database programs.

If you don’t like the automatic table editor because it gets in your way on lines which
you would like to start with ‘|’, you can turn it off with

(setq org-enable-table-editor nil)

Then the only table command that still works is C-c C-c to do a manual re-align.

3.2 Narrow columns

The width of columns is automatically determined by the table editor. Sometimes a
single field or a few fields need to carry more text, leading to inconveniently wide columns.
To limit1 the width of a column, one field anywhere in the column may contain just the
string ‘<N>’ where ‘N’ is an integer specifying the width of the column in characters. The
next re-align will then set the width of this column to no more than this value.

1 This feature does not work on XEmacs.

Chapter 3: Tables 15

---+------------------------------		---+--------		
				<6>
1	one		1	one
2	two	----\	2	two
3	This is a long chunk of text	----/	3	This=>
4	four		4	four
---+------------------------------		---+--------		

Fields that are wider become clipped and end in the string ‘=>’. Note that the full text is
still in the buffer, it is only invisible. To see the full text, hold the mouse over the field -
a tool-tip window will show the full content. To edit such a field, use the command C-c ‘

(that is C-c followed by the backquote). This will open a new window with the full field.
Edit it and finish with C-c C-c.

When visiting a file containing a table with narrowed columns, the necessary character
hiding has not yet happened, and the table needs to be aligned before it looks nice. Setting
the option org-startup-align-all-tables will realign all tables in a file upon visiting,
but also slow down startup. You can also set this option on a per-file basis with:

#+STARTUP: align
#+STARTUP: noalign

3.3 Column groups

When Org-mode exports tables, it does so by default without vertical lines because that
is visually more satisfying in general. Occasionally however, vertical lines can be useful to
structure a table into groups of columns, much like horizontal lines can do for groups of
rows. In order to specify column groups, you can use a special row where the first field
contains only ‘/’. The further fields can either contain ‘<’ to indicate that this column
should start a group, ‘>’ to indicate the end of a column, or ‘<>’ to make a column a group
of its own. Boundaries between colum groups will upon export be marked with vertical
lines. Here is an example:

| | N | N^2 | N^3 | N^4 | sqrt(n) | sqrt[4](N) |
|---+----+-----+-----+-----+---------+------------|
/	<>	<		>	<	>
#	1	1	1	1	1	1
#	2	4	8	16	1.4142	1.1892
#	3	9	27	81	1.7321	1.3161
---+----+-----+-----+-----+---------+------------						
#+TBLFM: $3=$2^2::$4=$2^3::$5=$2^4::$6=sqrt($2)::$7=sqrt(sqrt(($2))

It is also sufficient to just insert the colum group starters after every vertical line you’d
like to have:

| N | N^2 | N^3 | N^4 | sqrt(n) | sqrt[4](N) |
|----+-----+-----+-----+---------+------------|
| / | < | | | < | |

Chapter 3: Tables 16

3.4 The Orgtbl minor mode

If you like the intuitive way the Org-mode table editor works, you might also want to
use it in other modes like text-mode or mail-mode. The minor mode Orgtbl-mode makes
this possible. You can always toggle the mode with M-x orgtbl-mode. To turn it on by
default, for example in mail mode, use

(add-hook ’mail-mode-hook ’turn-on-orgtbl)

Furthermore, with some special setup, it is possible to maintain tables in arbitrary
syntax with Orgtbl-mode. For example, it is possible to construct LaTeX tables with the
underlying ease and power of Orgtbl-mode, including spreadsheet capabilities. For details,
see Section A.2 [Tables in arbitrary syntax], page 91.

3.5 The spreadsheet

The table editor makes use of the Emacs ‘calc’ package to implement spreadsheet-
like capabilities. It can also evaluate Emacs Lisp forms to derive fields from other fields.
While fully featured, Org-mode’s implementation is not identical to other spreadsheets.
For example, Org-mode knows the concept of a column formula that will be applied to all
non-header fields in a column without having to copy the formula to each relevant field.

3.5.1 References

To compute fields in the table from other fields, formulas must reference other fields or
ranges. In Org-mode, fields can be referenced by name, by absolute coordinates, and by
relative coordinates. To find out what the coordinates of a field are, press C-c ? in that
field, or press C-c } to toggle the display of a grid.

Field references

Formulas can reference the value of another field in two ways. Like in any other spread-
sheet, you may reference fields with a letter/number combination like B3, meaning the 2nd
field in the 3rd row.
Org-mode also uses another, more general operator that looks like this:

@row$column

Column references can be absolute like ‘1’, ‘2’,...‘N’, or relative to the current column like
‘+1’ or ‘-2’.

The row specification only counts data lines and ignores horizontal separator lines
(hlines). You can use absolute row numbers ‘1’...‘N’, and row numbers relative to the
current row like ‘+3’ or ‘-1’. Or specify the row relative to one of the hlines: ‘I’ refers to
the first hline, ‘II’ to the second etc. ‘-I’ refers to the first such line above the current line,
‘+I’ to the first such line below the current line. You can also write ‘III+2’ which is the
second data line after the third hline in the table. Relative row numbers like ‘-3’ will not
cross hlines if the current line is too close to the hline. Instead, the value directly at the
hline is used.

Chapter 3: Tables 17

‘0’ refers to the current row and column. Also, if you omit either the column or the row
part of the reference, the current row/column is implied.

Org-mode’s references with unsigned numbers are fixed references in the sense that if
you use the same reference in the formula for two different fields, the same field will be
referenced each time. Org-mode’s references with signed numbers are floating references
because the same reference operator can reference different fields depending on the field
being calculated by the formula.

Here are a few examples:

@2$3 2nd row, 3rd column
C2 same as previous
$5 column 5 in the current row
E& same as previous
@2 current column, row 2
@-1$-3 the field one row up, three columns to the left
@-I$2 field just under hline above current row, column 2

Range references

You may reference a rectangular range of fields by specifying two field references con-
nected by two dots ‘..’. If both fields are in the current row, you may simply use ‘$2..$7’,
but if at least one field is in a different row, you need to use the general @row$column format
at least for the first field (i.e the reference must start with ‘@’ in order to be interpreted
correctly). Examples:

$1..$3 First three fields in the current row.
$P..$Q Range, using column names (see under Advanced)
@2$1..@4$3 6 fields between these two fields.
A2..C4 Same as above.
@-1$-2..@-1 3 numbers from the column to the left, 2 up to current row

Range references return a vector of values that can be fed into Calc vector functions. Empty
fields in ranges are normally suppressed, so that the vector contains only the non-empty
fields (but see the ‘E’ mode switch below). If there are no non-empty fields, ‘[0]’ is returned
to avoid syntax errors in formulas.

Named references

‘$name’ is interpreted as the name of a column, parameter or constant. Constants are
defined globally through the variable org-table-formula-constants, and locally (for the
file) through a line like

#+CONSTANTS: c=299792458. pi=3.14 eps=2.4e-6

Also properties (see Chapter 7 [Properties and columns], page 41) can be used as constants
in table formulas: For a property ‘:XYZ:’ use the name ‘$PROP_XYZ’, and the property
will be searched in the current outline entry and in the hierarchy above it. If you have
the ‘constants.el’ package, it will also be used to resolve constants, including natural

Chapter 3: Tables 18

constants like ‘$h’ for Planck’s constant, and units like ‘$km’ for kilometers2. Column
names and parameters can be specified in special table lines. These are described below,
see Section 3.5.8 [Advanced features], page 22. All names must start with a letter, and
further consist of letters and numbers.

3.5.2 Formula syntax for Calc

A formula can be any algebraic expression understood by the Emacs ‘Calc’ package.
Note that ‘calc’ has the non-standard convention that ‘/’ has lower precedence than ‘*’,
so that ‘a/b*c’ is interpreted as ‘a/(b*c)’. Before evaluation by calc-eval (see section
“Calling calc from Your Lisp Programs” in GNU Emacs Calc Manual), variable substitution
takes place according to the rules described above. The range vectors can be directly fed
into the calc vector functions like ‘vmean’ and ‘vsum’.

A formula can contain an optional mode string after a semicolon. This string consists of
flags to influence Calc and other modes during execution. By default, Org-mode uses the
standard calc modes (precision 12, angular units degrees, fraction and symbolic modes off.
The display format, however, has been changed to (float 5) to keep tables compact. The
default settings can be configured using the variable org-calc-default-modes.

p20 switch the internal precision to 20 digits
n3 s3 e2 f4 normal, scientific, engineering, or fixed display format
D R angle modes: degrees, radians
F S fraction and symbolic modes
N interpret all fields as numbers, use 0 for non-numbers
T force text interpretation
E keep empty fields in ranges

In addition, you may provide a printf format specifier to reformat the final result. A few
examples:

$1+$2 Sum of first and second field
$1+$2;%.2f Same, format result to two decimals
exp($2)+exp($1) Math functions can be used
$0;%.1f Reformat current cell to 1 decimal
($3-32)*5/9 Degrees F -> C conversion
$c/$1/$cm Hz -> cm conversion, using ‘constants.el’
tan($1);Dp3s1 Compute in degrees, precision 3, display SCI 1
sin($1);Dp3%.1e Same, but use printf specifier for display
vmean($2..$7) Compute column range mean, using vector function
vmean($2..$7);EN Same, but treat empty fields as 0
taylor($3,x=7,2) taylor series of $3, at x=7, second degree

Calc also contains a complete set of logical operations. For example

if($1<20,teen,string("")) “teen” if age $1 less than 20, else empty

2 ‘Constant.el’ can supply the values of constants in two different unit systems, SI and cgs. Which one is
used depends on the value of the variable constants-unit-system. You can use the #+STARTUP options
constSI and constcgs to set this value for the current buffer.

Chapter 3: Tables 19

3.5.3 Emacs Lisp forms as formulas

It is also possible to write a formula in Emacs Lisp; this can be useful for string manip-
ulation and control structures, if the Calc’s functionality is not enough. If a formula starts
with a single quote followed by an opening parenthesis, then it is evaluated as a lisp form.
The evaluation should return either a string or a number. Just as with ‘calc’ formulas, you
can specify modes and a printf format after a semicolon. With Emacs Lisp forms, you need
to be concious about the way field references are interpolated into the form. By default, a
reference will be interpolated as a Lisp string (in double quotes) containing the field. If you
provide the ‘N’ mode switch, all referenced elements will be numbers (non-number fields will
be zero) and interpolated as Lisp numbers, without quotes. If you provide the ‘L’ flag, all
fields will be interpolated literally, without quotes. I.e., if you want a reference to be inter-
preted as a string by the Lisp form, enclode the reference operator itself in double quotes,
like "$3". Ranges are inserted as space-separated fields, so you can embed them in list or
vector syntax. A few examples, note how the ‘N’ mode is used when we do computations in
lisp.

Swap the first two characters of the content of column 1
’(concat (substring $1 1 2) (substring $1 0 1) (substring $1 2))

Add columns 1 and 2, equivalent to the Calc’s $1+$2
’(+ $1 $2);N

Compute the sum of columns 1-4, like Calc’s vsum($1..$4)
’(apply ’+ ’($1..$4));N

3.5.4 Field formulas

To assign a formula to a particular field, type it directly into the field, preceded by ‘:=’,
for example ‘:=$1+$2’. When you press 〈TAB〉 or 〈RET〉 or C-c C-c with the cursor still in
the field, the formula will be stored as the formula for this field, evaluated, and the current
field replaced with the result.

Formulas are stored in a special line starting with ‘#+TBLFM:’ directly below the table.
If you typed the equation in the 4th field of the 3rd data line in the table, the formula
will look like ‘@3$4=$1+$2’. When inserting/deleting/swapping column and rows with the
appropriate commands, absolute references (but not relative ones) in stored formulas are
modified in order to still reference the same field. Of cause this is not true if you edit the
table structure with normal editing commands - then you must fix the equations yourself.

Instead of typing an equation into the field, you may also use the following command

C-u C-c = Install a new formula for the current field. The command prompts for a formula,
with default taken from the ‘#+TBLFM:’ line, applies it to the current field and
stores it.

3.5.5 Column formulas

Often in a table, the same formula should be used for all fields in a particular column.
Instead of having to copy the formula to all fields in that column, org-mode allows to assign
a single formula to an entire column. If the table contains horizontal separator hlines,

Chapter 3: Tables 20

everything before the first such line is considered part of the table header and will not be
modified by column formulas.

To assign a formula to a column, type it directly into any field in the column, preceded
by an equal sign, like ‘=$1+$2’. When you press 〈TAB〉 or 〈RET〉 or C-c C-c with the cursor
still in the field, the formula will be stored as the formula for the current column, evaluated
and the current field replaced with the result. If the field contains only ‘=’, the previously
stored formula for this column is used. For each column, Org-mode will only remember the
most recently used formula. In the ‘TBLFM:’ line, column formulas will look like ‘$4=$1+$2’.

Instead of typing an equation into the field, you may also use the following command:

C-c = Install a new formula for the current column and replace current field with the
result of the formula. The command prompts for a formula, with default taken
from the ‘#+TBLFM’ line, applies it to the current field and stores it. With a
numerical prefix (e.g. C-5 C-c =) will apply it to that many consecutive fields
in the current column.

3.5.6 Editing and Debugging formulas

You can edit individual formulas in the minibuffer or directly in the field. Org-mode can
also prepare a special buffer with all active formulas of a table. When offering a formula
for editing, Org-mode converts references to the standard format (like B3 or D&) if possible.
If you prefer to only work with the internal format (like @3$2 or $4), configure the variable
org-table-use-standard-references.

C-c =

C-u C-c = Edit the formula associated with the current column/field in the minibuffer.
See Section 3.5.5 [Column formulas], page 19 and Section 3.5.4 [Field formulas],
page 19.

C-u C-u C-c =

Re-insert the active formula (either a field formula, or a column formula) into
the current field, so that you can edit it directly in the field. The advantage
over editing in the minibuffer is that you can use the command C-c ?.

C-c ? While editing a formula in a table field, highlight the field(s) referenced by the
reference at the cursor position in the formula.

C-c } Toggle the display of row and column numbers for a table, using overlays. These
are updated each time the table is aligned, you can force it with C-c C-c.

C-c { Toggle the formula debugger on and off. See below.

C-c ’ Edit all formulas for the current table in a special buffer, where the formulas will
be displayed one per line. If the current field has an active formula, the cursor
in the formula editor will mark it. While inside the special buffer, Org-mode
will automatically highlight any field or range reference at the cursor position.
You may edit, remove and add formulas, and use the following commands:

C-c C-c

C-x C-s Exit the formula editor and store the modified formulas. With C-u

prefix, also apply the new formulas to the entire table.

Chapter 3: Tables 21

C-c C-q Exit the formula editor without installing changes.

C-c C-r Toggle all references in the formula editor between standard (like
B3) and internal (like @3$2).

〈TAB〉 Pretty-print or indent lisp formula at point. When in a line con-
taining a lisp formula, format the formula according to Emacs Lisp
rules. Another 〈TAB〉 collapses the formula back again. In the open
formula, 〈TAB〉 re-indents just like in Emacs-lisp-mode.

M-〈TAB〉 Complete Lisp symbols, just like in Emacs-lisp-mode.

S-〈up〉/〈down〉/〈left〉/〈right〉
Shift the reference at point. For example, if the reference is B3 and
you press S-〈right〉, it will become C3. This also works for relative
references, and for hline references.

M-S-〈up〉/〈down〉
Move the test line for column formulas in the Org-mode buffer up
and down.

M-〈up〉/〈down〉
Scroll the window displaying the table.

C-c } Turn the coordinate grid in the table on and off.

Making a table field blank does not remove the formula associated with the field, because
that is stored in a different line (the ‘TBLFM’ line) - during the next recalculation the field
will be filled again. To remove a formula from a field, you have to give an empty reply when
prompted for the formula, or to edit the ‘#+TBLFM’ line.

You may edit the ‘#+TBLFM’ directly and re-apply the changed equations with C-c C-c

in that line, or with the normal recalculation commands in the table.

Debugging formulas

When the evaluation of a formula leads to an error, the field content becomes the string
‘#ERROR’. If you would like see what is going on during variable substitution and calculation
in order to find a bug, turn on formula debugging in the Tbl menu and repeat the calcula-
tion, for example by pressing C-u C-u C-c = 〈RET〉 in a field. Detailed information will be
displayed.

3.5.7 Updating the Table

Recalculation of a table is normally not automatic, but needs to be triggered by a
command. See Section 3.5.8 [Advanced features], page 22 for a way to make recalculation
at least semi-automatically.

In order to recalculate a line of a table or the entire table, use the following commands:

C-c * Recalculate the current row by first applying the stored column formulas from
left to right, and all field formulas in the current row.

Chapter 3: Tables 22

C-u C-c *

C-u C-c C-c

Recompute the entire table, line by line. Any lines before the first hline are left
alone, assuming that these are part of the table header.

C-u C-u C-c *

Iterate the table by recomputing it until no further changes occur. This may be
necessary if some computed fields use the value of other fields that are computed
later in the calculation sequence.

3.5.8 Advanced features

If you want the recalculation of fields to happen automatically, or if you want to be able
to assign names to fields and columns, you need to reserve the first column of the table for
special marking characters.

C-# Rotate the calculation mark in first column through the states ‘’, ‘#’, ‘*’, ‘!’, ‘$’.
The meaning of these characters is discussed below. When there is an active
region, change all marks in the region.

Here is an example of a table that collects exam results of students and makes use of
these features:

|---+---------+--------+--------+--------+-------+------|
| | Student | Prob 1 | Prob 2 | Prob 3 | Total | Note |
|---+---------+--------+--------+--------+-------+------|
!		P1	P2	P3	Tot	
#	Maximum	10	15	25	50	10.0
^		m1	m2	m3	mt	
---+---------+--------+--------+--------+-------+------						
#	Peter	10	8	23	41	8.2
#	Sara	6	14	19	39	7.8
#	Sam	2	4	3	9	1.8
---+---------+--------+--------+--------+-------+------						
	Average				29.7	
^					at	
$	max=50					
---+---------+--------+--------+--------+-------+------						
#+TBLFM: $6=vsum($P1..$P3)::$7=10*$Tot/$max;%.1f::$at=vmean(@-II..@-I);%.1f

Important: Please note that for these special tables, recalculating the table with C-u C-c

* will only affect rows that are marked ‘#’ or ‘*’, and fields that have a formula assigned to
the field itself. The column formulas are not applied in rows with empty first field.

The marking characters have the following meaning:

‘!’ The fields in this line define names for the columns, so that you may refer to a
column as ‘$Tot’ instead of ‘$6’.

‘^’ This row defines names for the fields above the row. With such a definition,
any formula in the table may use ‘$m1’ to refer to the value ‘10’. Also, if you
assign a formula to a names field, it will be stored as ‘$name=...’.

Chapter 3: Tables 23

‘_’ Similar to ‘^’, but defines names for the fields in the row below.

‘$’ Fields in this row can define parameters for formulas. For example, if a field in
a ‘$’ row contains ‘max=50’, then formulas in this table can refer to the value
50 using ‘$max’. Parameters work exactly like constants, only that they can be
defined on a per-table basis.

‘#’ Fields in this row are automatically recalculated when pressing 〈TAB〉 or 〈RET〉
or S-〈TAB〉 in this row. Also, this row is selected for a global recalculation with
C-u C-c *. Unmarked lines will be left alone by this command.

‘*’ Selects this line for global recalculation with C-u C-c *, but not for automatic
recalculation. Use this when automatic recalculation slows down editing too
much.

‘’ Unmarked lines are exempt from recalculation with C-u C-c *. All lines that
should be recalculated should be marked with ‘#’ or ‘*’.

‘/’ Do not export this line. Useful for lines that contain the narrowing ‘<N>’ mark-
ers.

Finally, just to whet your appetite on what can be done with the fantastic ‘calc’ package,
here is a table that computes the Taylor series of degree n at location x for a couple of
functions (homework: try that with Excel :-)

|---+-------------+---+-----+--------------------------------------|
| | Func | n | x | Result |
|---+-------------+---+-----+--------------------------------------|
#	exp(x)	1	x	1 + x
#	exp(x)	2	x	1 + x + x^2 / 2
#	exp(x)	3	x	1 + x + x^2 / 2 + x^3 / 6
#	x^2+sqrt(x)	2	x=0	x*(0.5 / 0) + x^2 (2 - 0.25 / 0) / 2
#	x^2+sqrt(x)	2	x=1	2 + 2.5 x - 2.5 + 0.875 (x - 1)^2
*	tan(x)	3	x	0.0175 x + 1.77e-6 x^3
---+-------------+---+-----+--------------------------------------				
#+TBLFM: $5=taylor($2,$4,$3);n3

Chapter 4: Hyperlinks 24

4 Hyperlinks

Just like HTML, Org-mode provides links inside a file, and external links to other files,
Usenet articles, emails, and much more.

4.1 Link format

Org-mode will recognize plain URL-like links and activate them as clickable links. The
general link format, however, looks like this:

[[link][description]] or alternatively [[link]]

Once a link in the buffer is complete (all brackets present), Org-mode will change the
display so that ‘description’ is displayed instead of ‘[[link][description]]’ and ‘link’
is displayed instead of ‘[[link]]’. Links will be highlighted in the face org-link, which
by default is an underlined face. You can directly edit the visible part of a link. Note that
this can be either the ‘link’ part (if there is no description) or the ‘description’ part. To
edit also the invisible ‘link’ part, use C-c C-l with the cursor on the link.

If you place the cursor at the beginning or just behind the end of the displayed text and
press 〈BACKSPACE〉, you will remove the (invisible) bracket at that location. This makes the
link incomplete and the internals are again displayed as plain text. Inserting the missing
bracket hides the link internals again. To show the internal structure of all links, use the
menu entry Org->Hyperlinks->Literal links.

4.2 Internal links

If the link does not look like a URL, it is considered to be internal in the current file.
Links such as ‘[[My Target]]’ or ‘[[My Target][Find my target]]’ lead to a text search
in the current file. The link can be followed with C-c C-o when the cursor is on the link, or
with a mouse click (see Section 4.4 [Handling links], page 26). The preferred match for such
a link is a dedicated target: the same string in double angular brackets. Targets may be
located anywhere; sometimes it is convenient to put them into a comment line. For example

<<My Target>>

In HTML export (see Section 11.2 [HTML export], page 71), such targets will become
named anchors for direct access through ‘http’ links1.

If no dedicated target exists, Org-mode will search for the words in the link. In the
above example the search would be for ‘my target’. Links starting with a star like ‘*My
Target’ restrict the search to headlines. When searching, Org-mode will first try an exact
match, but then move on to more and more lenient searches. For example, the link ‘[[*My
Targets]]’ will find any of the following:

** My targets
** TODO my targets are bright
** my 20 targets are

1 Note that text before the first headline is usually not exported, so the first such target should be after
the first headline.

Chapter 4: Hyperlinks 25

To insert a link targeting a headline, in-buffer completion can be used. Just type a star
followed by a few optional letters into the buffer and press M-〈TAB〉. All headlines in the
current buffer will be offered as completions. See Section 4.4 [Handling links], page 26, for
more commands creating links.

Following a link pushes a mark onto Org-mode’s own mark ring. You can return to the
previous position with C-c &. Using this command several times in direct succession goes
back to positions recorded earlier.

4.2.1 Radio targets

You can configure Org-mode to link any occurrences of certain target names in normal
text. So without explicitly creating a link, the text connects to the target radioing its
position. Radio targets are enclosed by triple angular brackets. For example, a target ‘<<<My
Target>>>’ causes each occurrence of ‘my target’ in normal text to become activated as a
link. The Org-mode file is scanned automatically for radio targets only when the file is first
loaded into Emacs. To update the target list during editing, press C-c C-c with the cursor
on or at a target.

4.3 External links

Org-mode supports links to files, websites, Usenet and email messages, and BBDB
database entries. External links are URL-like locators. They start with a short identi-
fying string followed by a colon. There can be no space after the colon. The following list
shows examples for each link type.

http://www.astro.uva.nl/~dominik on the web
file:/home/dominik/images/jupiter.jpg file, absolute path
file:papers/last.pdf file, relative path
news:comp.emacs Usenet link
mailto:adent@galaxy.net Mail link
vm:folder VM folder link
vm:folder#id VM message link
vm://myself@some.where.org/folder#id VM on remote machine
wl:folder WANDERLUST folder link
wl:folder#id WANDERLUST message link
mhe:folder MH-E folder link
mhe:folder#id MH-E message link
rmail:folder RMAIL folder link
rmail:folder#id RMAIL message link
gnus:group GNUS group link
gnus:group#id GNUS article link
bbdb:Richard Stallman BBDB link
shell:ls *.org A shell command
elisp:(find-file-other-frame "Elisp.org") An elisp form to evaluate

A link should be enclosed in double brackets and may contain a descriptive text to be
displayed instead of the url (see Section 4.1 [Link format], page 24), for example:

Chapter 4: Hyperlinks 26

[[http://www.gnu.org/software/emacs/][GNU Emacs]]

If the description is a file name or URL that points to an image, HTML export (see Sec-
tion 11.2 [HTML export], page 71) will inline the image as a clickable button. If there is
no description at all and the link points to an image, that image will be inlined into the
exported HTML file.

Org-mode also finds external links in the normal text and activates them as links. If
spaces must be part of the link (for example in ‘bbdb:Richard Stallman’), or if you need
to remove ambiguities about the end of the link, enclose them in angular brackets.

4.4 Handling links

Org-mode provides methods to create a link in the correct syntax, to insert it into an
org-mode file, and to follow the link.

C-c l Store a link to the current location. This is a global command which can be
used in any buffer to create a link. The link will be stored for later insertion into
an Org-mode buffer (see below). For Org-mode files, if there is a ‘<<target>>’
at the cursor, the link points to the target. Otherwise it points to the current
headline. For VM, RMAIL, WANDERLUST, MH-E, GNUS and BBDB buffers,
the link will indicate the current article/entry. For W3 and W3M buffers, the
link goes to the current URL. For any other files, the link will point to the
file, with a search string (see Section 4.6 [Search options], page 28) pointing to
the contents of the current line. If there is an active region, the selected words
will form the basis of the search string. If the automatically created link is not
working correctly or accurately enough, you can write custom functions to select
the search string and to do the search for particular file types - see Section 4.7
[Custom searches], page 29. The key binding C-c l is only a suggestion - see
Section 1.2 [Installation], page 2.

C-c C-l Insert a link. This prompts for a link to be inserted into the buffer. You can
just type a link, using text for an internal link, or one of the link type prefixes
mentioned in the examples above. All links stored during the current session
are part of the history for this prompt, so you can access them with 〈up〉 and
〈down〉. Completion, on the other hand, will help you to insert valid link prefixes
like ‘http:’ or ‘ftp:’, including the prefixes defined through link abbreviations
(see Section 4.5 [Link abbreviations], page 28). The link will be inserted into
the buffer2, along with a descriptive text. If some text was selected when this
command is called, the selected text becomes the default description.
Note that you don’t have to use this command to insert a link. Links in Org-
mode are plain text, and you can type or paste them straight into the buffer. By
using this command, the links are automatically enclosed in double brackets,
and you will be asked for the optional descriptive text.

2 After insertion of a stored link, the link will be removed from the list of stored links. To keep it in the
list later use, use a triple C-u prefix to C-c C-l, or configure the option org-keep-stored-link-after-

insertion.

Chapter 4: Hyperlinks 27

C-u C-c C-l

When C-c C-l is called with a C-u prefix argument, a link to a file will be
inserted and you may use file name completion to select the name of the file.
The path to the file is inserted relative to the directory of the current org file, if
the linked file is in the current directory or in a subdirectory of it, or if the path
is written relative to the current directory using ‘../’. Otherwise an absolute
path is used, if possible with ‘~/’ for your home directory. You can force an
absolute path with two C-u prefixes.

C-c C-l (with cursor on existing link)
When the cursor is on an existing link, C-c C-l allows you to edit the link and
description parts of the link.

C-c C-o Open link at point. This will launch a web browser for URLs (using
browse-url-at-point), run vm/mh-e/wanderlust/rmail/gnus/bbdb for the
corresponding links, and execute the command in a shell link. When the
cursor is on an internal link, this commands runs the corresponding search.
When the cursor is on a TAG list in a headline, it creates the corresponding
TAGS view. If the cursor is on a time stamp, it compiles the agenda for that
date. Furthermore, it will visit text and remote files in ‘file:’ links with
Emacs and select a suitable application for local non-text files. Classification
of files is based on file extension only. See option org-file-apps. If you want
to override the default application and visit the file with Emacs, use a C-u

prefix.

mouse-2

mouse-1 On links, mouse-2 will open the link just as C-c C-o would. Under Emacs 22,
also mouse-1 will follow a link.

mouse-3 Like mouse-2, but force file links to be opened with Emacs, and internal links
to be displayed in another window3.

C-c % Push the current position onto the mark ring, to be able to return easily. Com-
mands following an internal link do this automatically.

C-c & Jump back to a recorded position. A position is recorded by the commands
following internal links, and by C-c %. Using this command several times in
direct succession moves through a ring of previously recorded positions.

C-c C-x C-n

C-c C-x C-p

Move forward/backward to the next link in the buffer. At the limit of the
buffer, the search fails once, and then wraps around. The key bindings for this
are really too long, you might want to bind this also to C-n and C-p

(add-hook ’org-load-hook
(lambda ()
(define-key ’org-mode-map "\C-n" ’org-next-link)
(define-key ’org-mode-map "\C-p" ’org-previous-link)))

3 See the variable org-display-internal-link-with-indirect-buffer

Chapter 4: Hyperlinks 28

4.5 Link abbreviations

Long URLs can be cumbersome to type, and often many similar links are needed in a
document. For this you can use link abbreviations. An abbreviated link looks like this

[[linkword:tag][description]]

where the tag is optional. Such abbreviations are resolved according to the information in
the variable org-link-abbrev-alist that relates the linkwords to replacement text. Here
is an example:

(setq org-link-abbrev-alist
’(("bugzilla" . "http://10.1.2.9/bugzilla/show_bug.cgi?id=")
("google" . "http://www.google.com/search?q=")
("ads" . "http://adsabs.harvard.edu/cgi-bin/

nph-abs_connect?author=%s&db_key=AST")))

If the replacement text contains the string ‘%s’, it will be replaced with the tag. Otherwise
the tag will be appended to the string in order to create the link. You may also specify a
function that will be called with the tag as the only argument to create the link.

With the above setting, you could link to a specific bug with [[bugzilla:129]], search
the web for ‘OrgMode’ with [[google:OrgMode]] and find out what the Org-mode author
is doing besides Emacs hacking with [[ads:Dominik,C]].

If you need special abbreviations just for a single Org-mode buffer, you can define them
in the file with

#+LINK: bugzilla http://10.1.2.9/bugzilla/show_bug.cgi?id=
#+LINK: google http://www.google.com/search?q=%s

In-buffer completion see Section 13.1 [Completion], page 82 can be used after ‘[’ to complete
link abbreviations.

4.6 Search options in file links

File links can contain additional information to make Emacs jump to a particular location
in the file when following a link. This can be a line number or a search option after a double4

colon. For example, when the command C-c l creates a link (see Section 4.4 [Handling
links], page 26) to a file, it encodes the words in the current line as a search string that can
be used to find this line back later when following the link with C-c C-o.

Here is the syntax of the different ways to attach a search to a file link, together with
an explanation:

[[file:~/code/main.c::255]]
[[file:~/xx.org::My Target]]
[[file:~/xx.org::*My Target]]
[[file:~/xx.org::/regexp/]]

255 Jump to line 255.

4 For backward compatibility, line numbers can also follow a single colon.

Chapter 4: Hyperlinks 29

My Target Search for a link target ‘<<My Target>>’, or do a text search for ‘my target’,
similar to the search in internal links, see Section 4.2 [Internal links], page 24.
In HTML export (see Section 11.2 [HTML export], page 71), such a file link will
become an HTML reference to the corresponding named anchor in the linked
file.

*My Target
In an Org-mode file, restrict search to headlines.

/regexp/ Do a regular expression search for regexp. This uses the Emacs command
occur to list all matches in a separate window. If the target file is in Org-
mode, org-occur is used to create a sparse tree with the matches.

As a degenerate case, a file link with an empty file name can be used to search the
current file. For example, [[file:::find me]] does a search for ‘find me’ in the current
file, just as ‘[[find me]]’ would.

4.7 Custom Searches

The default mechanism for creating search strings and for doing the actual search related
to a file link may not work correctly in all cases. For example, BibTeX database files have
many entries like ‘year="1993"’ which would not result in good search strings, because the
only unique identification for a BibTeX entry is the citation key.

If you come across such a problem, you can write custom functions to set the right
search string for a particular file type, and to do the search for the string in the file.
Using add-hook, these functions need to be added to the hook variables org-create-
file-search-functions and org-execute-file-search-functions. See the docstring
for these variables for more information. Org-mode actually uses this mechanism for BibTEX
database files, and you can use the corresponding code as an implementation example.
Search for ‘BibTeX links’ in the source file.

4.8 Remember

Another way to create org entries with links to other files is through the remember
package by John Wiegley. Remember lets you store quick notes with little interruption of
your work flow. See http://www.emacswiki.org/cgi-bin/wiki/RememberMode for more
information. The notes produced by Remember can be stored in different ways, and Org-
mode files are a good target. Org-mode significantly expands the possibilities of remember :
You may define templates for different note types, and to associate target files and headlines
with specific templates. It also allows you to select the location where a note should be
stored interactively, on the fly.

4.8.1 Setting up remember

The following customization will tell remember to use org files as target, and to create
annotations compatible with Org-mode links.

http://www.emacswiki.org/cgi-bin/wiki/RememberMode

Chapter 4: Hyperlinks 30

(setq org-directory "~/path/to/my/orgfiles/")
(setq org-default-notes-file "~/.notes")
(setq remember-annotation-functions ’(org-remember-annotation))
(setq remember-handler-functions ’(org-remember-handler))
(add-hook ’remember-mode-hook ’org-remember-apply-template)

4.8.2 Remember templates

In combination with Org-mode, you can use templates to generate different types of
remember notes. For example, if you would like to use one template to create general
TODO entries, another one for journal entries, and a third one for collecting random ideas,
you could use:

(setq org-remember-templates
’((?t "* TODO %?\n %i\n %a" "~/org/TODO.org")

(?j "* %U %?\n\n %i\n %a" "~/org/JOURNAL.org")
(?i "* %^{Title}\n %i\n %a" "~/org/JOURNAL.org" "New Ideas")))

In these entries, the character specifies how to select the template. The first string specifies
the template. Two more (optional) strings give the file in which, and the headline under
which the new note should be stored. The file defaults (if not present or nil) to org-
default-notes-file, the heading to org-remember-default-headline. Both defaults
help to get to the storing location quickly, but you can change the location interactively
while storing the note.

When you call M-x remember (or M-x org-remember) to remember something, org will
prompt for a key to select the template (if you have more than one template) and then
prepare the buffer like

* TODO
[[file:link to where you called remember]]

or
* [2006-03-21 Tue 15:37]

[[file:link to where you called remember]]

During expansion of the template, special %-escapes allow dynamic insertion of content:
%^{prompt} prompt the user for a string and replace this sequence with it.
%t time stamp, date only
%T time stamp with date and time
%u, %U like the above, but inactive time stamps
%^t like %t, but prompt for date. Similarly %^T, %^u, %^U

You may define a prompt like %^{Birthday}t
%n user name (taken from user-full-name)
%a annotation, normally the link created with org-store-link
%i initial content, the region when remember is called with C-u.

The entire text will be indented like %i itself.
%^g prompt for tags, with completion on tags in target file.
%^G prompt for tags, with completion all tags in all agenda files.
%:keyword specific information for certain link types, see below

Chapter 4: Hyperlinks 31

For specific link types, the following keywords will be defined:

Link type | Available keywords
-------------------+--
bbdb | %:name %:company
vm, wl, mh, rmail | %:type %:subject %:message-id

| %:from %:fromname %:fromaddress
| %:to %:toname %:toaddress
| %:fromto (either "to NAME" or "from NAME")5

gnus | %:group, for messages also all email fields
w3, w3m | %:url
info | %:file %:node
calendar | %:date"

To place the cursor after template expansion use:

%? After completing the template, position cursor here.

If you change you mind about which template to use, call org-remember in the remember
buffer. You may then select a new template that will be filled with the previous context
information.

4.8.3 Storing notes

When you are finished preparing a note with remember, you have to press C-c C-c to
file the note away. The handler first prompts for a target file - if you press 〈RET〉, the
value specified for the template is used. Then the command offers the headings tree of the
selected file, with the cursor position at the default headline (if you had specified one in
the template). You can either immediately press 〈RET〉 to get the note placed there. Or you
can use the following keys to find a better location:

〈TAB〉 Cycle visibility.
〈down〉 / 〈up〉 Next/previous visible headline.
n / p Next/previous visible headline.
f / b Next/previous headline same level.
u One level up.

Pressing 〈RET〉 or 〈left〉 or 〈right〉 then leads to the following result.

Cursor position Key Note gets inserted
buffer-start 〈RET〉 as level 2 heading at end of file
on headline 〈RET〉 as sublevel of the heading at cursor

〈left〉/〈right〉 as same level, before/after current heading
not on headline 〈RET〉 at cursor position, level taken from context.

So a fast way to store the note to its default location is to press C-c C-c 〈RET〉 〈RET〉.
Even shorter would be C-u C-c C-c, which does the same without even asking for a file or
showing the tree.

Before inserting the text into a tree, the function ensures that the text has a headline, i.e.
a first line that starts with a ‘*’. If not, a headline is constructed from the current date and

5 This will always be the other, not the user. See the variable org-from-is-user-regexp.

Chapter 4: Hyperlinks 32

some additional data. If the variable org-adapt-indentation is non-nil, the entire text is
also indented so that it starts in the same column as the headline (after the asterisks).

Chapter 5: TODO items 33

5 TODO items

Org-mode does not maintain TODO lists as a separate document. TODO items are an
integral part of the notes file, because TODO items usually come up while taking notes!
With Org-mode, you simply mark any entry in a tree as being a TODO item. In this way,
the information is not duplicated, and the entire context from which the item emerged is
always present when you check.

Of course, this technique causes TODO items to be scattered throughout your file. Org-
mode provides methods to give you an overview over all things you have to do.

5.1 Basic TODO functionality

Any headline can become a TODO item by starting it with the word TODO, for example:

*** TODO Write letter to Sam Fortune

The most important commands to work with TODO entries are:

C-c C-t Rotate the TODO state of the current item among

,-> (unmarked) -> TODO -> DONE --.
’--------------------------------’

The same rotation can also be done “remotely” from the timeline and agenda
buffers with the t command key (see Section 9.5 [Agenda commands], page 59).

S-〈right〉
S-〈left〉 Select the following/preceding TODO state, similar to cycling. Mostly useful if

more than two TODO states are possible (see Section 5.2 [TODO extensions],
page 34).

C-c C-v View TODO items in a sparse tree (see Section 2.7 [Sparse trees], page 8).
Folds the entire buffer, but shows all TODO items and the headings hierarchy
above them. With prefix arg, search for a specific TODO. You will be prompted
for the keyword, and you can also give a list of keywords like kwd1|kwd2|....
With numerical prefix N, show the tree for the Nth keyword in the variable
org-todo-keywords. With two prefix args, find all TODO and DONE entries.

C-c a t Show the global TODO list. This collects the TODO items from all agenda files
(see Chapter 9 [Agenda views], page 53) into a single buffer. The buffer is in
agenda-mode, so there are commands to examine and manipulate the TODO
entries directly from that buffer (see Section 9.5 [Agenda commands], page 59).
See Section 9.3.2 [Global TODO list], page 55, for more information.

S-M-〈RET〉 Insert a new TODO entry below the current one.

Chapter 5: TODO items 34

5.2 Extended use of TODO keywords

The default implementation of TODO entries is just two states: TODO and DONE.
You can use the TODO feature for more complicated things by configuring the variable
org-todo-keywords. With special setup, the TODO keyword system can work differently
in different files.

Note that tags are another way to classify headlines in general and TODO items in
particular (see Chapter 6 [Tags], page 38).

5.2.1 TODO keywords as workflow states

You can use TODO keywords to indicate different sequential states in the process of
working on an item, for example1:

(setq org-todo-keywords
’((sequence "TODO" "FEEDBACK" "VERIFY" "|" "DONE" "DELEGATED")))

The vertical bar separates the TODO keywords (states that need action) from the DONE
states (which need no further action. If you don’t provide the separator bar, the last state
is used as the DONE state. With this setup, the command C-c C-t will cycle an entry from
TODO to FEEDBACK, then to VERIFY, and finally to DONE and DELEGATED. You
may also use a prefix argument to quickly select a specific state. For example C-3 C-c C-t

will change the state immediately to VERIFY. If you define many keywords, you can use
in-buffer completion (see Section 13.1 [Completion], page 82) to insert these words into the
buffer. Changing a todo state can be logged with a timestamp, see Section 8.4.2 [Tracking
TODO state changes], page 51 for more information.

5.2.2 TODO keywords as types

The second possibility is to use TODO keywords to indicate different types of action
items. For example, you might want to indicate that items are for “work” or “home”. Or,
when you work with several people on a single project, you might want to assign action
items directly to persons, by using their names as TODO keywords. This would be set up
like this:

(setq org-todo-keywords ’((type "Fred" "Sara" "Lucy" "|" "DONE")))

In this case, different keywords do not indicate a sequence, but rather different types.
So the normal work flow would be to assign a task to a person, and later to mark it DONE.
Org-mode supports this style by adapting the workings of the command C-c C-t2. When
used several times in succession, it will still cycle through all names, in order to first select
the right type for a task. But when you return to the item after some time and execute
C-c C-t again, it will switch from any name directly to DONE. Use prefix arguments or
completion to quickly select a specific name. You can also review the items of a specific
TODO type in a sparse tree by using a numeric prefix to C-c C-v. For example, to see all
things Lucy has to do, you would use C-3 C-c C-v. To collect Lucy’s items from all agenda

1 Changing this variable only becomes effective after restarting Org-mode in a buffer.
2 This is also true for the t command in the timeline and agenda buffers.

Chapter 5: TODO items 35

files into a single buffer, you would use the prefix arg as well when creating the global todo
list: C-3 C-c t.

5.2.3 Multiple keyword sets in one file

Sometimes you may want to use different sets of TODO keywords in parallel. For
example, you may want to have the basic TODO/DONE, but also a workflow for bug fixing,
and a separate state indicating that an item has been canceled (so it is not DONE, but also
does not require action). Your setup would then look like this:

(setq org-todo-keywords
’((sequence "TODO" "|" "DONE")
(sequence "REPORT" "BUG" "KNOWNCAUSE" "|" "FIXED")
(sequence "|" "CANCELED")))

The keywords should all be different, this helps Org-mode to keep track of which sub-
sequence should be used for a given entry. In this setup, C-c C-t only operates within a
subsequence, so it switches from DONE to (nothing) to TODO, and from FIXED to (nothing)
to REPORT. Therefore you need a mechanism to initially select the correct sequence. Be-
sides the obvious ways like typing a keyword or using completion, you may also apply the
following commands:

C-S-〈right〉
C-S-〈left〉 These keys jump from one TODO subset to the next. In the above example,

C-S-〈right〉 would jump from TODO or DONE to REPORT, and any of the words in
the second row to CANCELED.

S-〈right〉
S-〈left〉 S-〈<left>〉 and S-〈<right>〉 and walk through all keywords from all sets, so for

example S-〈<right>〉 would switch from DONE to REPORT in the example above.

5.2.4 Setting up keywords for individual files

It can be very useful to use different aspects of the TODO mechanism in different files.
For file-local settings, you need to add special lines to the file which set the keywords and
interpretation for that file only. For example, to set one of the two examples discussed
above, you need one of the following lines, starting in column zero anywhere in the file:

#+SEQ_TODO: TODO FEEDBACK VERIFY | DONE CANCELED

or
#+TYP_TODO: Fred Sara Lucy Mike | DONE

A setup for using several sets in parallel would be:
#+SEQ_TODO: "TODO" "|" "DONE"
#+SEQ_TODO: "REPORT" "BUG" "KNOWNCAUSE" "|" "FIXED"
#+SEQ_TODO: "|" "CANCELED"

To make sure you are using the correct keyword, type ‘#+’ into the buffer and then use
M-〈TAB〉 completion.

Remember that the keywords after the vertical bar (or the last keyword if no bar is
there) must always mean that the item is DONE (although you may use a different word).

Chapter 5: TODO items 36

After changing one of these lines, use C-c C-c with the cursor still in the line to make the
changes known to Org-mode3.

5.3 Priorities

If you use Org-mode extensively to organize your work, you may end up with a number
of TODO entries so large that you’d like to prioritize them. This can be done by placing a
priority cookie into the headline, like this

*** TODO [#A] Write letter to Sam Fortune

With its standard setup, Org-mode supports priorities ‘A’, ‘B’, and ‘C’. ‘A’ is the highest
priority. An entry without a cookie is treated as priority ‘B’. Priorities make a difference
only in the agenda (see Section 9.3.1 [Weekly/Daily agenda], page 54).

C-c , Set the priority of the current headline. The command prompts for a priority
character ‘A’, ‘B’ or ‘C’. When you press 〈SPC〉 instead, the priority cookie is
removed from the headline. The priorities can also be changed “remotely” from
the timeline and agenda buffer with the , command (see Section 9.5 [Agenda
commands], page 59).

S-〈up〉
S-〈down〉 Increase/decrease priority of current headline. Note that these keys are also

used to modify time stamps (see Section 8.2 [Creating timestamps], page 47).
Furthermore, these keys are also used by CUA-mode (see Section 13.7.2 [Con-
flicts], page 88).

You can change the range of allowed priorities by setting the variables org-highest-
priority, org-lowest-priority, and org-default-priority. For an individual buffer,
you may set these values (highest, lowest, default) like this (please make sure that the
highest priority is earlier in the alphabet than the lowest priority):

#+PRIORITIES: A C B

5.4 Breaking tasks down into subtasks

It is often advisable to break down large tasks into smaller, manageable subtasks. You
can do this by creating an outline tree below a TODO item, with detailed subtasks on
the tree4. Another possibility is the use of checkboxes to identify (a hierarchy of) a large
number of subtasks (see Section 5.5 [Checkboxes], page 36).

5.5 Checkboxes

Every item in a plain list (see Section 2.8 [Plain lists], page 9) can be made a checkbox
by starting it with the string ‘[]’. This feature is similar to TODO items (see Chapter 5

3 Org-mode parses these lines only when Org-mode is activated after visiting a file. C-c C-c with the
cursor in a line starting with ‘#+’ is simply restarting Org-mode for the current buffer.

4 To keep subtasks out of the global TODO list, see the org-agenda-todo-list-sublevels.

Chapter 5: TODO items 37

[TODO items], page 33), but more lightweight. Checkboxes are not included into the global
TODO list, so they are often great to split a task into a number of simple steps. Or you
can use them in a shopping list. To toggle a checkbox, use C-c C-c, or try Piotr Zielinski’s
‘org-mouse.el’. Here is an example of a checkbox list.

* TODO Organize party [3/6]
- call people [1/3]
- [] Peter
- [X] Sarah
- [] Sam

- [X] order food
- [] think about what music to play
- [X] talk to the neighbors

The ‘[3/6]’ and ‘[1/3]’ in the first and second line are cookies indicating how many
checkboxes are present in this entry, and how many of them have been checked off. This
can give you an idea on how many checkboxes remain, even without opening a folded entry.
The cookies can be placed into a headline or into (the first line of) a plain list item. Each
cookie covers all checkboxes structurally below that headline/item. You have to insert the
cookie yourself by typing either ‘[/]’ or ‘[%]’. In the first case you get an ‘n out of m’
result, in the second case you get information about the percentage of checkboxes checked
(in the above example, this would be ‘[50%]’ and ‘[33%], respectively’).
The following commands work with checkboxes:

C-c C-c Toggle checkbox at point. With prefix argument, set it to ‘[-]’, which is
considered to be an intermediate state.

C-c C-x C-b

Toggle checkbox at point.
− If there is an active region, toggle the first checkbox in the region and set

all remaining boxes to the same status as the first. If you want to toggle
all boxes in the region independently, use a prefix argument.

− If the cursor is in a headline, toggle checkboxes in the region between this
headline and the next (so not the entire subtree).

− If there is no active region, just toggle the checkbox at point.

M-S-〈RET〉 Insert a new item with a checkbox. This works only if the cursor is already in
a plain list item (see Section 2.8 [Plain lists], page 9).

C-c # Update the checkbox statistics in the current outline entry. When called with
a C-u prefix, update the entire file. Checkbox statistic cookies are updated
automatically if you toggle checkboxes with C-c C-c and make new ones with
M-S-〈RET〉. If you delete boxes or add/change them by hand, use this command
to get things back into synch. Or simply toggle any checkbox twice with C-c

C-c.

Chapter 6: Tags 38

6 Tags

If you wish to implement a system of labels and contexts for cross-correlating information,
an excellent way is to assign tags to headlines. Org-mode has extensive support for using
tags.

Every headline can contain a list of tags, at the end of the headline. Tags are normal
words containing letters, numbers, ‘_’, and ‘@’. Tags must be preceded and followed by a
single colon; like ‘:WORK:’. Several tags can be specified like ‘:WORK:URGENT:’.

6.1 Tag inheritance

Tags make use of the hierarchical structure of outline trees. If a heading has a certain
tag, all subheadings will inherit the tag as well. For example, in the list

* Meeting with the French group :WORK:
** Summary by Frank :BOSS:NOTES:
*** TODO Prepare slides for him :ACTION:

the final heading will have the tags ‘:WORK:’, ‘:BOSS:’, ‘:NOTES:’, and ‘:ACTION:’. When
executing tag searches and Org-mode finds that a certain headline matches the search
criterion, it will not check any sublevel headline, assuming that these likely also match, and
that the list of matches can become very long. This may not be what you want, however, and
you can influence inheritance and searching using the variables org-use-tag-inheritance
and org-tags-match-list-sublevels.

6.2 Setting tags

Tags can simply be typed into the buffer at the end of a headline. After a colon, M-〈TAB〉
offers completion on tags. There is also a special command for inserting tags:

C-c C-c Enter new tags for the current headline. Org-mode will either offer completion
or a special single-key interface for setting tags, see below. After pressing 〈RET〉,
the tags will be inserted and aligned to org-tags-column. When called with
a C-u prefix, all tags in the current buffer will be aligned to that column, just
to make things look nice. TAGS are automatically realigned after promotion,
demotion, and TODO state changes (see Section 5.1 [TODO basics], page 33).

Org will support tag insertion based on a list of tags. By default this list is constructed
dynamically, containing all tags currently used in the buffer. You may also globally specify
a hard list of tags with the variable org-tag-alist. Finally you can set the default tags
for a given file with lines like

#+TAGS: @WORK @HOME @TENNISCLUB
#+TAGS: Laptop Car PC Sailboat

If you have globally defined your preferred set of tags using the variable org-tag-alist,
but would like to use a dynamic tag list in a specific file: Just add an empty TAGS option
line to that file:

Chapter 6: Tags 39

#+TAGS:

The default support method for entering tags is minibuffer completion. However, Org-
mode also implements a much better method: fast tag selection. This method allows to
select and deselect tags with a single key per tag. To function efficiently, you should assign
unique keys to most tags. This can be done globally with

(setq org-tag-alist ’(("@WORK" . ?w) ("@HOME" . ?h) ("Laptop" . ?l)))

or on a per-file basis with
#+TAGS: @WORK(w) @HOME(h) @TENNISCLUB(t) Laptop(l) PC(p)

You can also group together tags that are mutually exclusive. With curly braces1

#+TAGS: { @WORK(w) @HOME(h) @TENNISCLUB(t) } Laptop(l) PC(p)

you indicate that at most one of ‘@WORK’, ‘@HOME’, and ‘@TENNISCLUB’ should be selected.
Don’t forget to press C-c C-c with the cursor in one of these lines to activate any changes.

If at least one tag has a selection key, pressing C-c C-c will automatically present you
with a special interface, listing inherited tags, the tags of the current headline, and a list of
all legal tags with corresponding keys2. In this interface, you can use the following keys:

a-z... Pressing keys assigned to tags will add or remove them from the list of tags in
the current line. Selecting a tag in a group of mutually exclusive tags will turn
off any other tags from that group.

〈TAB〉 Enter a tag in the minibuffer, even if the tag is not in the predefined list. You
will be able to complete on all tags present in the buffer.

〈SPC〉 Clear all tags for this line.

〈RET〉 Accept the modified set.

C-g Abort without installing changes.

q If q is not assigned to a tag, it aborts like C-g.

! Turn off groups of mutually exclusive tags. Use this to (as an exception) assign
several tags from such a group.

C-c Toggle auto-exit after the next change (see below). If you are using expert
mode, the first C-c will display the selection window.

This method lets you assign tags to a headline with very few keys. With the above setup,
you could clear the current tags and set ‘@HOME’, ‘Laptop’ and ‘PC’ tags with just the
following keys: C-c C-c 〈SPC〉 h l p 〈RET〉. Switching from ‘@HOME’ to ‘@WORK’ would be done
with C-c C-c w 〈RET〉 or alternatively with C-c C-c C-c w. Adding the non-predefined tag
‘Sarah’ could be done with C-c C-c 〈TAB〉 S a r a h 〈RET〉 〈RET〉.

If you find that most of the time, you need only a single keypress to modify your list
of tags, set the variable org-fast-tag-selection-single-key. Then you no longer have
to press 〈RET〉 to exit fast tag selection - it will immediately exit after the first change. If
you then occasionally need more keys, press C-c to turn off auto-exit for the current tag
selection process (in effect: start selection with C-c C-c C-c instead of C-c C-c). If you set
the variable to the value expert, the special window is not even shown for single-key tag
selection, it comes up only when you press an extra C-c.

1 In org-mode-alist use ’(:startgroup) and ’(:endgroup), respectively. Several groups are allowed.
2 Keys will automatically be assigned to tags which have no configured keys.

Chapter 6: Tags 40

6.3 Tag searches

Once a tags system has been set up, it can be used to collect related information into
special lists.

C-c \ Create a sparse tree with all headlines matching a tags search. With a C-u

prefix argument, ignore headlines that are not a TODO line.

C-c a m Create a global list of tag matches from all agenda files. See Section 9.3.3
[Matching tags and properties], page 56.

C-c a M Create a global list of tag matches from all agenda files, but check only TODO
items and force checking subitems (see variable org-tags-match-list-
sublevels).

A tags search string can use Boolean operators ‘&’ for AND and ‘|’ for OR. ‘&’ binds
more strongly than ‘|’. Parenthesis are currently not implemented. A tag may also be
preceded by ‘-’, to select against it, and ‘+’ is syntactic sugar for positive selection. The
AND operator ‘&’ is optional when ‘+’ or ‘-’ is present. Examples:

‘+WORK-BOSS’
Select headlines tagged ‘:WORK:’, but discard those also tagged ‘:BOSS:’.

‘WORK|LAPTOP’
Selects lines tagged ‘:WORK:’ or ‘:LAPTOP:’.

‘WORK|LAPTOP&NIGHT’
Like before, but require the ‘:LAPTOP:’ lines to be tagged also ‘NIGHT’.

If you are using multi-state TODO keywords (see Section 5.2 [TODO extensions],
page 34), it can be useful to also match on the TODO keyword. This can be done by
adding a condition after a slash to a tags match. The syntax is similar to the tag matches,
but should be applied with consideration: For example, a positive selection on several
TODO keywords can not meaningfully be combined with boolean AND. However, negative
selection combined with AND can be meaningful. To make sure that only lines are checked
that actually have any TODO keyword, use C-c a M, or equivalently start the todo part
after the slash with ‘!’. Examples:

‘WORK/WAITING’
Select ‘:WORK:’-tagged TODO lines with the specific TODO keyword ‘WAITING’.

‘WORK/!-WAITING-NEXT’
Select ‘:WORK:’-tagged TODO lines that are neither ‘WAITING’ nor ‘NEXT’

‘WORK/+WAITING|+NEXT’
Select ‘:WORK:’-tagged TODO lines that are either ‘WAITING’ or ‘NEXT’.

Any element of the tag/todo match can be a regular expression - in this case it must be
enclosed in curly braces. For example, ‘WORK+{^BOSS.*}’ matches headlines that contain
the tag ‘WORK’ and any tag starting with ‘BOSS’.

You can also require a headline to be of a certain level, by writing instead of any TAG
an expression like ‘LEVEL=3’. For example, a search ‘+LEVEL=3+BOSS/-DONE’ lists all level
three headlines that have the tag BOSS and are not marked with the todo keyword DONE.

Chapter 7: Properties and Columns 41

7 Properties and Columns

Properties are a set of key-value pairs associated with an entry. There are two main
applications for properties in Org-mode. First, properties are like tags, but with a value.
For example, in a file where you document bugs and plan releases of a piece of software,
instead of using tags like :release_1:, :release_2:, it can be more efficient to use a
property RELEASE with a value 1.0 or 2.0. Second, you can use properties to implement
(very basic) database capabilities in an Org-mode buffer, for example to create a list of
Music CD’s you own. You can edit and view properties conveniently in column view (see
Section 7.4 [Column view], page 42).

7.1 Property Syntax

Properties are key-value pairs. They need to be inserted into a special drawer (see
Section 2.9 [Drawers], page 10) with the name PROPERTIES. Each property is specified on
a single line, with the key (surrounded by colons) first, and the value after it. Here is an
example:

* CD collection
** Classic
*** Goldberg Variations

:PROPERTIES:
:Title: Goldberg Variations
:Composer: J.S. Bach
:Artist: Glen Gould
:Publisher: Deutsche Grammphon
:NDisks: 1
:END:

You may define the allowed values for a particular property ‘XYZ’ by setting a property
‘XYZ_ALL’. This special property is inherited, so if you set it in a level 1 entry, it will apply
to the entire tree. When allowed values are defined, setting the corresponding property
becomes easier and is less prone to typing errors. For the example with the CD collection,
we can predefine publishers and the number of disks in a box like this:

* CD collection
:PROPERTIES:
:NDisks_ALL: 1 2 3 4
:Publisher_ALL: "Deutsche Grammophon" Phillips EMI
:END:

The following commands help to work with properties:

M-〈TAB〉 After an initial colon in a line, complete property keys. All keys used in the
current file will be offered as possible completions.

M-x org-insert-property-drawer

Insert a property drawer into the current entry. The drawer will be inserted
early in the entry, but after the lines with planning information like deadlines.

C-c C-c With the cursor in a property drawer, this executes property commands.

Chapter 7: Properties and Columns 42

C-c C-c s Set a property in the current entry. Both the property and the value can be
inserted using completion.

S-〈left〉/〈right〉
Switch property at point to the next/previous allowed value.

C-c C-c d Remove a property from the current entry.

C-c C-c D Globally remove a property, from all entries in the current file.

7.2 Special Properties

Special properties provide alternative access method to Org-mode features discussed in
the previous chapters, like the TODO state or the priority of an entry. This interface exists
so that you can include these states into columns view (see Section 7.4 [Column view],
page 42). The following property names are special and should not be used as keys in the
properties drawer:

TODO The TODO keyword of the entry.
TAGS The tags defined directly in the headline.
ALLTAGS All tags, including inherited ones.
PRIORITY The priority of the entry, a string with a single letter.
DEADLINE The deadline time string, without the angular brackets.
SCHEDULED The scheduling time stamp, without the angular brackets.

7.3 Property searches

To create sparse trees and special lists with selection based on properties, the same
commands are used as for tag searches (see Section 6.3 [Tag searches], page 40), and the
same logic applies. For example, a search string

+WORK-BOSS+PRIORITY="A"+coffee="unlimited"+with={Sarah\|Denny}

finds entries tagged ‘:WORK:’ but not ‘:BOSS:’, which also have a priority value ‘A’, a
‘:coffee:’ property with the value ‘unlimited’, and a ‘:with:’ property that is matched
by the regular expression ‘Sarah\|Denny’.

7.4 Column View

A great way to view and edit properties in an outline tree is column view. In column
view, each outline item is turned into a table row. Columns in this table provide access to
properties of the entries. Org-mode implements columns by overlaying a tabular structure
over the headline of each item. While the headlines have been turned into a table row, you
can still change the visibility of the outline tree. For example, you get a compact table by
switching to CONTENTS view (S-〈TAB〉 S-〈TAB〉, or simply c while column view is active),
but you can still open, read, and edit the entry below each headline. Or, you can switch to
column view after executing a sparse tree command and in this way get a table only for the
selected items. Column view also works in agenda buffers (see Chapter 9 [Agenda views],
page 53) where queries have collected selected items, possibly from a number of files.

Chapter 7: Properties and Columns 43

7.4.1 Defining Columns

Setting up a column view first requires defining the columns. This is done by defining a
column format line.

7.4.1.1 Scope of column definitions

To define a column format for an entire file, use a line like

#+COLUMNS: %25ITEM %TAGS %PRIORITY %TODO

To specify a format that only applies to a specific tree, add a COLUMNS property to
the top node of that tree, for example

** Top node for columns view
:PROPERTIES:
:COLUMNS: %25ITEM %TAGS %PRIORITY %TODO
:END:

If a COLUMNS property is present in an entry, it defines columns for the entry itself, and for
the entire subtree below it. Since the column definition is part of the hierarchical structure
of the document, you can define columns on level 1 that are general enough for all sublevels,
and more specific columns further down, when you edit a deeper part of the tree.

7.4.1.2 Column attributes

A column definition sets the attributes of a column. The general definition looks like
this:

%[width]property[(title)][{summary-type}]

Except for the percent sign and the property name, all items are optional. The individual
parts have the following meaning:

width An integer specifying the width of the column in characters.
If omitted, the width will be determined automatically.

property The property that should be edited in this column.
(title) The header text for the column. If omitted, the

property name is used.
{summary-type} The summary type. If specified, the column values for

parent nodes are computed from the children.
Supported summary types are:
{+} Sum numbers in this column.
{:} Sum times, HH:MM:SS, plain numbers are hours.
{X} Checkbox status, [X] if all children are [X].

Here is an example for a complete columns definition, along with allowed values.

:COLUMNS: %20ITEM %9Approved(Approved?){X} %Owner %11Status %10Time_Spent{:}
:Owner_ALL: Tammy Mark Karl Lisa Don
:Status_ALL: "In progress" "Not started yet" "Finished" ""
:Approved_ALL: "[]" "[X]"

Chapter 7: Properties and Columns 44

The first column, ‘%25ITEM’, means the first 25 characters of the item itself, i.e. of the
headline. You probably always should start the column definition with the ITEM specifier.
The other specifiers create columns ‘Owner’ with a list of names as allowed values, for
‘Status’ with four different possible values, and for a checkbox field ‘Approved’. When
no width is given after the ‘%’ character, the column will be exactly as wide as it needs
to be in order to fully display all values. The ‘Approved’ column does have a modified
title (‘Approved?’, with a question mark). Summaries will be created for the ‘Time_Spent’
column by adding time duration expressions like HH:MM, and for the ‘Approved’ column,
by providing an ‘[X]’ status if all children have been checked.

7.4.2 Using Column View

Turning column view on and off
C-c C-x C-c

Create the column view for the local environment. This command searches the
hierarchy, up from point, for a COLUMNS property that defines a format. When
one is found, the column view table is established for the entire tree, starting
from the entry that contains the COLUMNS property. If none is found, the format
is taken from the #+COLUMNS line or from the variable org-columns-default-
format, and column view is established for the current entry and its subtree.

q Exit column view.

Editing values
〈left〉 〈right〉 〈up〉 〈down〉

Move through the column view from field to field.

S-〈left〉/〈right〉
Switch to the next/previous allowed value of the field. For this, you have to
have specified allowed values for a property.

n / p Same as S-〈left〉/〈right〉

e Edit the property at point. For the special properties, this will invoke the same
interface that you normally use to change that property. For example, when
editing a TAGS property, the tag completion or fast selection interface will pop
up.

v View the full value of this property. This is useful if the width of the column is
smaller than that of the value.

a Edit the list of allowed values for this property. If the list is found in the
hierarchy, the modified values is stored there. If no list is found, the new value
is stored in the first entry that is part of the current column view.

Modifying the table structure
< / > Make the column narrower/wider by one character.

S-M-〈right〉 Insert a new column, to the right of the current column.

S-M-〈left〉 Delete the current column.

Chapter 7: Properties and Columns 45

7.5 The Property API

There is a full API for accessing and changing properties. This API can be used by
Emacs Lisp programs to work with properties and to implement features based on them.
For more information see Section A.5 [Using the property API], page 96.

Chapter 8: Timestamps 46

8 Timestamps

Items can be labeled with timestamps to make them useful for project planning.

8.1 Time stamps, deadlines and scheduling

A time stamp is a specification of a date (possibly with time or a range of times) in a
special format, either ‘<2003-09-16 Tue>’ or ‘<2003-09-16 Tue 09:39>’ or ‘<2003-09-16
Tue 12:00-12:30>’1. A time stamp can appear anywhere in the headline or body of an
org-tree entry. Its presence causes entries to be shown on specific dates in the agenda (see
Section 9.3.1 [Weekly/Daily agenda], page 54). We distinguish:

Plain time stamp
A simple time stamp just assigns a date/time to an item. This is just like
writing down an appointment in a paper agenda, or like writing down an event
in a diary, when you want to take note of when something happened. In the
timeline and agenda displays, the headline of an entry associated with a plain
time stamp will be shown exactly on that date.

* Meet Peter at the movies <2006-11-01 Wed 19:15>
* Discussion on climate change <2006-11-02 Thu 20:00-22:00>

Time stamp with repeater interval
A time stamp may contain a repeater interval, indicating that it applies not only
on the given date, but again and again after a certain interval of N days (d),
weeks (w), months(m), or years(y). The following will show up in the agenda
every Wednesday:

* Pick up Sam at school <2007-05-16 Wed 12:30 +1w>

Diary-style sexp entries
For more complex date specifications, Org-mode supports using the special sexp
diary entries implemented in the Emacs calendar/diary package. For example

* The nerd meeting on every 2nd Thursday of the month
<%%(diary-float t 4 2)>

Time/Date range
Two time stamps connected by ‘--’ denote a range. The headline will be shown
on the first and last day of the range, and on any dates that are displayed and
fall in the range. Here is an example:

** Meeting in Amsterdam
<2004-08-23 Mon>--<2004-08-26 Thu>

Inactive time stamp
Just like a plain time stamp, but with square brackets instead of angular ones.
These time stamps are inactive in the sense that they do not trigger an entry
to show up in the agenda.

* Gillian comes late for the fifth time [2006-11-01 Wed]

1 This is the standard ISO date/time format. If you cannot get used to these, see Section 8.2.2 [Custom
time format], page 48

Chapter 8: Timestamps 47

8.2 Creating timestamps

For Org-mode to recognize time stamps, they need to be in the specific format. All
commands listed below produce time stamps in the correct format.

C-c . Prompt for a date and insert a corresponding time stamp. When the cursor is
at a previously used time stamp, it is updated to NOW. When this command
is used twice in succession, a time range is inserted.

C-u C-c . Like C-c ., but use the alternative format which contains date and time. The
default time can be rounded to multiples of 5 minutes, see the option org-
time-stamp-rounding-minutes.

C-c ! Like C-c ., but insert an inactive time stamp that will not cause an agenda
entry.

C-c < Insert a time stamp corresponding to the cursor date in the Calendar.

C-c > Access the Emacs calendar for the current date. If there is a timestamp in the
current line, goto the corresponding date instead.

C-c C-o Access the agenda for the date given by the time stamp or -range at point (see
Section 9.3.1 [Weekly/Daily agenda], page 54).

S-〈left〉
S-〈right〉 Change date at cursor by one day. These key bindings conflict with CUA-mode

(see Section 13.7.2 [Conflicts], page 88).

S-〈up〉
S-〈down〉 Change the item under the cursor in a timestamp. The cursor can be on a

year, month, day, hour or minute. Note that if the cursor is in a headline
and not at a time stamp, these same keys modify the priority of an item. (see
Section 5.3 [Priorities], page 36). The key bindings also conflict with CUA-mode
(see Section 13.7.2 [Conflicts], page 88).

C-c C-y Evaluate a time range by computing the difference between start and end.
With prefix arg, insert result after the time range (in a table: into the following
column).

8.2.1 The date/time prompt

When Org-mode prompts for a date/time, the prompt suggests to enter an ISO date.
But it will in fact accept any string containing some date and/or time information. You can,
for example, use C-y to paste a (possibly multi-line) string copied from an email message.
Org-mode will find whatever information is in there and will replace anything not specified
with the current date and time. For example:

3-2-5 --> 2003-02-05
feb 15 --> currentyear-02-15
sep 12 9 --> 2009-09-12
12:45 --> today 12:45
22 sept 0:34 --> currentyear-09-22 0:34

Chapter 8: Timestamps 48

12 --> currentyear-currentmonth-12
Fri --> nearest Friday (today or later)
+4 --> 4 days from now (if +N is the only thing given)

The function understands English month and weekday abbreviations. If you want to use
unabbreviated names and/or other languages, configure the variables parse-time-months
and parse-time-weekdays.

Parallel to the minibuffer prompt, a calendar is popped up2. When you exit the date
prompt, either by clicking on a date in the calendar, or by pressing 〈RET〉, the date selected
in the calendar will be combined with the information entered at the prompt. You can
control the calendar fully from the minibuffer:

< Scroll calendar backwards by one month.

> Scroll calendar forwards by one month.

mouse-1 Select date by clicking on it.

S-〈right〉 One day forward.

S-〈left〉 One day back.

S-〈down〉 One week forward.

S-〈up〉 One week back.

M-S-〈right〉 One month forward.

M-S-〈left〉 One month back.

〈RET〉 Choose date in calendar (only if nothing was typed into minibuffer).

8.2.2 Custom time format

Org-mode uses the standard ISO notation for dates and times as it is defined in ISO
8601. If you cannot get used to this and require another representation of date and time to
keep you happy, you can get it by customizing the variables org-display-custom-times
and org-time-stamp-custom-formats.

C-c C-x C-t

Toggle the display of custom formats for dates and times.

Org-mode needs the default format for scanning, so the custom date/time format does not
replace the default format - instead it is put over the default format using text properties.
This has the following consequences:

• You cannot place the cursor onto a time stamp anymore, only before or after.
• The S-〈up〉/〈down〉 keys can no longer be used to adjust each component of a time stamp.

If the cursor is at the beginning of the stamp, S-〈up〉/〈down〉 will change the stamp by
one day, just like S-〈left〉/〈right〉. At the end of the stamp, the time will be changed by
one minute.

2 If you don’t need/want the calendar, configure the variable org-popup-calendar-for-date-prompt.

Chapter 8: Timestamps 49

• If the time stamp contains a range of clock times or a repeater, these will not be
overlayed, but remain in the buffer as they were.

• When you delete a time stamp character-by-character, it will only disappear from
the buffer after all (invisible) characters belonging to the ISO timestamp have been
removed.

• If the custom time stamp format is longer than the default and you are using dates in
tables, table alignment will be messed up. If the custom format is shorter, things do
work as expected.

8.3 Deadlines and Scheduling

A time stamp may be preceded by special keywords to facilitate planning of work:

DEADLINE
The task (most likely a TODO item) is supposed to be finished on that date,
and it will be listed then. In addition, the compilation for today will carry
a warning about the approaching or missed deadline, starting org-deadline-
warning-days before the due date, and continuing until the entry is marked
DONE. An example:

*** TODO write article about the Earth for the Guide
The editor in charge is [[bbdb:Ford Prefect]]
DEADLINE: <2004-02-29 Sun>

SCHEDULED
You are planning to start working on that task on the given date. The headline
will be listed under the given date3. In addition, a reminder that the scheduled
date has passed will be present in the compilation for today, until the entry is
marked DONE. I.e., the task will automatically be forwarded until completed.

*** TODO Call Trillian for a date on New Years Eve.
SCHEDULED: <2004-12-25 Sat>

8.3.1 Inserting deadline/schedule

The following commands allow to quickly insert a deadline or to schedule an item:

C-c C-d Insert ‘DEADLINE’ keyword along with a stamp. The insertion will happen in
the line directly following the headline.

C-c C-w Create a sparse tree with all deadlines that are either past-due, or which will
become due within org-deadline-warning-days. With C-u prefix, show all
deadlines in the file. With a numeric prefix, check that many days. For example,
C-1 C-c C-w shows all deadlines due tomorrow.

C-c C-s Insert ‘SCHEDULED’ keyword along with a stamp. The insertion will happen
in the line directly following the headline. Any CLOSED timestamp will be
removed.

3 It will still be listed on that date after it has been marked DONE. If you don’t like this, set the variable
org-agenda-skip-scheduled-if-done.

Chapter 8: Timestamps 50

8.3.2 Repeated Tasks

Some tasks need to be repeated again and again, and Org-mode therefore allows to use
a repeater in a DEADLINE or SCHEDULED time stamp, for example:

** TODO Pay the rent
DEADLINE: <2005-10-01 Sat +1m>

Deadlines and scheduled items produce entries in the agenda when they are over-due,
so it is important to be able to mark such an entry as completed once you have done so.
When you mark a DEADLINE or a SCHEDULE with the todo keyword DONE, it will no
longer produce entries in the agenda. The problem with this is, however, that then also
the next instance of the repeated entry will not be active. Org-mode deals with this in the
following way: When you try to mark such an entry DONE (using C-c C-t), it will shift
the base date of the repeating time stamp by the repeater interval, and immediately set
the entry state back to TODO. In the example above, setting the state to DONE would
actually switch the date like this:

** TODO Pay the rent
DEADLINE: <2005-11-01 Tue +1m>

You will also be prompted for a note that will be put under the DEADLINE line to keep
a record that you actually acted on the previous instance of this deadline.

As a consequence of shifting the base date, this entry will no longer be visible in the
agenda when checking past dates, but all future instances will be visible.

You may have both scheduling and deadline information for a specific task - just make
sure that the repeater intervals on both are the same.

8.4 Progress Logging

Org-mode can automatically record a time stamp when you mark a TODO item as
DONE, or even each time when you change the state of a TODO item. You can also
measure precisely the time you spent on specific items in a project by starting and stopping
a clock when you start and stop working on an aspect of a project.

8.4.1 Closing items

If you want to keep track of when a certain TODO item was finished, turn on logging
with4

(setq org-log-done t)

Then each time you turn a TODO entry into DONE using either C-c C-t in the Org-mode
buffer or t in the agenda buffer, a line ‘CLOSED: [timestamp]’ will be inserted just after
the headline. If you turn the entry back into a TODO item through further state cycling,
that line will be removed again. In the timeline (see Section 9.3.4 [Timeline], page 56) and
in the agenda (see Section 9.3.1 [Weekly/Daily agenda], page 54), you can then use the l

4 The corresponding in-buffer setting is: #+STARTUP: logdone

Chapter 8: Timestamps 51

key to display the TODO items closed on each day, giving you an overview of what has
been done on a day. If you want to record a note along with the timestamp, use5

(setq org-log-done ’(done))

8.4.2 Tracking TODO state changes

When TODO keywords are used as workflow states (see Section 5.2.1 [Workflow states],
page 34), you might want to keep track of when a state change occurred, and you may even
want to attach notes to that state change. With the setting

(setq org-log-done ’(state))

each state change will prompt you for a note that will be attached to the current headline.
Very likely you do not want this verbose tracking all the time, so it is probably better to
configure this behavior with in-buffer options. For example, if you are tracking purchases,
put these into a separate file that starts with:

#+SEQ_TODO: TODO ORDERED INVOICE PAYED RECEIVED SENT
#+STARTUP: lognotestate

8.4.3 Clocking work time

Org-mode allows you to clock the time you spent on specific tasks in a project. When
you start working on an item, you can start the clock. When you stop working on that task,
or when you mark the task done, the clock is stopped and the corresponding time interval
is recorded. It also computes the total time spent on each subtree of a project.

C-c C-x C-i

Start the clock on the current item (clock-in). This inserts the CLOCK keyword
together with a timestamp.

C-c C-x C-o

Stop the clock (clock-out). The inserts another timestamp at the same location
where the clock was last started. It also directly computes the resulting time
in inserts it after the time range as ‘=> HH:MM’. See the variable org-log-done
for the possibility to record an additional note together with the clock-out time
stamp6.

C-c C-y Recompute the time interval after changing one of the time stamps. This is
only necessary if you edit the time stamps directly. If you change them with
S-〈cursor〉 keys, the update is automatic.

C-c C-t Changing the TODO state of an item to DONE automatically stops the clock
if it is running in this same item.

C-c C-x C-x

Cancel the current clock. This is useful if a clock was started by mistake, or if
you ended up working on something else.

5 The corresponding in-buffer setting is: #+STARTUP: lognotedone
6 The corresponding in-buffer setting is: #+STARTUP: lognoteclock-out

Chapter 8: Timestamps 52

C-c C-x C-d

Display time summaries for each subtree in the current buffer. This puts over-
lays at the end of each headline, showing the total time recorded under that
heading, including the time of any subheadings. You can use visibility cycling
to study the tree, but the overlays disappear when you change the buffer (see
variable org-remove-highlights-with-change) or press C-c C-c.

C-c C-x C-r

Insert a dynamic block (see Section A.3 [Dynamic blocks], page 94) containing
a clock report as an org-mode table into the current file.

#+BEGIN: clocktable :maxlevel 2 :emphasize nil

#+END: clocktable

If such a block already exists, its content is replaced by the new table. The
‘BEGIN’ line can specify options:

:maxlevels Maximum level depth to which times are listed in the table.
:emphasize When t, emphasize level one and level two items
:block The time block to consider. This block is specified relative

to the current time and may be any of these keywords:
today, yesterday, thisweek, lastweek,
thismonth, lastmonth, thisyear, or lastyear.

:tstart A time string specifying when to start considering times
:tend A time string specifying when to stop considering times

So to get a clock summary for the current day, you could write
#+BEGIN: clocktable :maxlevel 2 :block today

#+END: clocktable

and to use a specific time range you could write7

#+BEGIN: clocktable :tstart "<2006-08-10 Thu 10:00>"
:tend "<2006-08-10 Thu 12:00>"

#+END: clocktable

C-u C-c C-x C-u

Update all dynamic blocks (see Section A.3 [Dynamic blocks], page 94). This
is useful if you have several clocktable blocks in a buffer.

The l key may be used in the timeline (see Section 9.3.4 [Timeline], page 56) and in the
agenda (see Section 9.3.1 [Weekly/Daily agenda], page 54) to show which tasks have been
worked on or closed during a day.

7 Note that all parameters must be specified in a single line - the line is broken here only to fit it onto the
manual.

Chapter 9: Agenda Views 53

9 Agenda Views

Due to the way Org-mode works, TODO items, time-stamped items, and tagged head-
lines can be scattered throughout a file or even a number of files. To get an overview over
open action items, or over events that are important for a particular date, this information
must be collected, sorted and displayed in an organized way.

Org-mode can select items based on various criteria, and display them in a separate
buffer. Six different view types are provided:

• an agenda that is like a calendar and shows information for specific dates,

• a TODO list that covers all unfinished action items,

• a tags view, showings headlines based on the tags associated with them,

• a timeline view that shows all events in a single Org-mode file, in time-sorted view,

• a stuck projects view showing projects that currently don’t move along, and

• custom views that are special tag/keyword searches and combinations of different views.

The extracted information is displayed in a special agenda buffer. This buffer is read-only,
but provides commands to visit the corresponding locations in the original Org-mode files,
and even to edit these files remotely.

Two variables control how the agenda buffer is displayed and whether the window con-
figuration is restored when the agenda exits: org-agenda-window-setup and org-agenda-
restore-windows-after-quit.

9.1 Agenda files

The information to be shown is collected from all agenda files, the files listed in the
variable org-agenda-files1. Thus even if you only work with a single Org-mode file, this
file should be put into that list2. You can customize org-agenda-files, but the easiest
way to maintain it is through the following commands

C-c [Add current file to the list of agenda files. The file is added to the front of the
list. If it was already in the list, it is moved to the front. With prefix arg, file
is added/moved to the end.

C-c] Remove current file from the list of agenda files.

C-,

C-’ Cycle through agenda file list, visiting one file after the other.

The Org menu contains the current list of files and can be used to visit any of them.

1 If the value of that variable is not a list, but a single file name, then the list of agenda files will be
maintained in that external file.

2 When using the dispatcher, pressing 1 before selecting a command will actually limit the command to
the current file, and ignore org-agenda-files until the next dispatcher command.

Chapter 9: Agenda Views 54

9.2 The agenda dispatcher

The views are created through a dispatcher that should be bound to a global key, for
example C-c a (see Section 1.2 [Installation], page 2). In the following we will assume
that C-c a is indeed how the dispatcher is accessed and list keyboard access to commands
accordingly. After pressing C-c a, an additional letter is required to execute a command.
The dispatcher offers the following default commands:

a Create the calendar-like agenda (see Section 9.3.1 [Weekly/Daily agenda],
page 54).

t / T Create a list of all TODO items (see Section 9.3.2 [Global TODO list], page 55).

m / M Create a list of headlines matching a TAGS expression (see Section 9.3.3 [Match-
ing tags and properties], page 56).

L Create the timeline view for the current buffer (see Section 9.3.4 [Timeline],
page 56).

/ ! Create a list of stuck projects (see Section 9.3.5 [Stuck projects], page 57).

1 Restrict an agenda command to the current buffer. After pressing 1, you still
need to press the character selecting the command.

0 If there is an active region, restrict the following agenda command to the region.
Otherwise, restrict it to the current subtree. After pressing 0, you still need to
press the character selecting the command.

You can also define custom commands that will be accessible through the dispatcher, just
like the default commands. This includes the possibility to create extended agenda buffers
that contain several blocks together, for example the weekly agenda, the global TODO list
and a number of special tags matches. See Section 9.6 [Custom agenda views], page 62.

9.3 The built-in agenda views

In this section we describe the built-in views.

9.3.1 The weekly/daily agenda

The purpose of the weekly/daily agenda is to act like a page of a paper agenda, showing
all the tasks for the current week or day.

C-c a a Compile an agenda for the current week from a list of org files. The agenda
shows the entries for each day. With a C-u prefix (or when the variable org-
agenda-include-all-todo is t), all unfinished TODO items (including those
without a date) are also listed at the beginning of the buffer, before the first
date.

Remote editing from the agenda buffer means, for example, that you can change the
dates of deadlines and appointments from the agenda buffer. The commands available in
the Agenda buffer are listed in Section 9.5 [Agenda commands], page 59.

Chapter 9: Agenda Views 55

Calendar/Diary integration

Emacs contains the calendar and diary by Edward M. Reingold. The calendar displays
a three-month calendar with holidays from different countries and cultures. The diary
allows you to keep track of anniversaries, lunar phases, sunrise/set, recurrent appointments
(weekly, monthly) and more. In this way, it is quite complementary to Org-mode. It can
be very useful to combine output from Org-mode with the diary.

In order to include entries from the Emacs diary into Org-mode’s agenda, you only need
to customize the variable

(setq org-agenda-include-diary t)

After that, everything will happen automatically. All diary entries including holidays,
anniversaries etc will be included in the agenda buffer created by Org-mode. 〈SPC〉, 〈TAB〉,
and 〈RET〉 can be used from the agenda buffer to jump to the diary file in order to edit
existing diary entries. The i command to insert new entries for the current date works in
the agenda buffer, as well as the commands S, M, and C to display Sunrise/Sunset times,
show lunar phases and to convert to other calendars, respectively. c can be used to switch
back and forth between calendar and agenda.

If you are using the diary only for sexp entries and holidays, it is faster to not use the
above setting, but instead to copy or even move the entries into an Org-mode file. Org-
mode evaluates diary-style sexp entries, and does it faster because there is no overhead for
first creating the diary display. Note that the sexp entries must start at the left margin,
no white space is allowed before them. For example, the following segment of an Org-mode
file will be processed and entries will be made in the agenda:

* Birthdays and similar stuff
#+CATEGORY: Holiday
%%(org-calendar-holiday) ; special function for holiday names
#+CATEGORY: Ann
%%(diary-anniversary 14 5 1956) Arthur Dent is %d years old
%%(diary-anniversary 2 10 1869) Mahatma Gandhi would be %d years old

9.3.2 The global TODO list

The global TODO list contains all unfinished TODO items, formatted and collected into
a single place.

C-c a t Show the global TODO list. This collects the TODO items from all agenda files
(see Chapter 9 [Agenda views], page 53) into a single buffer. The buffer is in
agenda-mode, so there are commands to examine and manipulate the TODO
entries directly from that buffer (see Section 9.5 [Agenda commands], page 59).

C-c a T Like the above, but allows selection of a specific TODO keyword. You can
also do this by specifying a prefix argument to C-c a t. With a C-u prefix
you are prompted for a keyword, and you may also specify several keywords by
separating them with ‘|’ as boolean OR operator. With a numeric prefix, the
Nth keyword in org-todo-keywords is selected. The r key in the agenda buffer

Chapter 9: Agenda Views 56

regenerates it, and you can give a prefix argument to this command to change
the selected TODO keyword, for example 3 r. If you often need a search for
a specific keyword, define a custom command for it (see Section 9.2 [Agenda
dispatcher], page 54).
Matching specific TODO keywords can also be done as part of a tags search
(see Section 6.3 [Tag searches], page 40).

Remote editing of TODO items means that you can change the state of a TODO en-
try with a single key press. The commands available in the TODO list are described in
Section 9.5 [Agenda commands], page 59.

Normally the global todo list simply shows all headlines with TODO keywords. This list
can become very long. There are two ways to keep it more compact:
− Some people view a TODO item that has been scheduled for execution (see Section 8.1

[Time stamps], page 46) as no longer open. Configure the variable org-agenda-todo-
ignore-scheduled to exclude scheduled items from the global TODO list.

− TODO items may have sublevels to break up the task into subtasks. In such cases it
may be enough to list only the highest level TODO headline and omit the sublevels
from the global list. Configure the variable org-agenda-todo-list-sublevels to get
this behavior.

9.3.3 Matching Tags and Properties

If headlines in the agenda files are marked with tags (see Chapter 6 [Tags], page 38), you
can select headlines based on the tags that apply to them and collect them into an agenda
buffer.

C-c a m Produce a list of all headlines that match a given set of tags. The command
prompts for a selection criterion, which is a boolean logic expression with tags,
like ‘+WORK+URGENT-WITHBOSS’ or ‘WORK|HOME’ (see Chapter 6 [Tags], page 38).
If you often need a specific search, define a custom command for it (see Sec-
tion 9.2 [Agenda dispatcher], page 54).

C-c a M Like C-c a m, but only select headlines that are also TODO items and force
checking subitems (see variable org-tags-match-list-sublevels). Matching
specific todo keywords together with a tags match is also possible, see Sec-
tion 6.3 [Tag searches], page 40.

The commands available in the tags list are described in Section 9.5 [Agenda commands],
page 59.

9.3.4 Timeline for a single file

The timeline summarizes all time-stamped items from a single Org-mode file in a time-
sorted view. The main purpose of this command is to give an overview over events in a
project.

C-c a L Show a time-sorted view of the org file, with all time-stamped items. When
called with a C-u prefix, all unfinished TODO entries (scheduled or not) are
also listed under the current date.

Chapter 9: Agenda Views 57

The commands available in the timeline buffer are listed in Section 9.5 [Agenda commands],
page 59.

9.3.5 Stuck projects

If you are following a system like David Allen’s GTD to organize your work, one of the
“duties” you have is a regular review to make sure that all projects move along. A stuck
project is a project that has no defined next actions, so it will never show up in the TODO
lists Org-mode produces. During the review, you need to identify such projects and define
next actions for them.

C-c a # List projects that are stuck.

C-c a ! Customize the variable org-stuck-projects to define what a stuck project is
and how to find it.

You almost certainly will have to configure this view before it will work for you. The
built-in default assumes that all your projects are level-2 headlines, and that a project is
not stuck if it has at least one entry marked with a todo keyword TODO or NEXT or
NEXTACTION.

Lets assume that you, in your own way of using Org-mode, identify projects with a tag
PROJECT, and that you use a todo keyword MAYBE to indicate a project that should
not be considered yet. Lets further assume that the todo keyword DONE marks finished
projects, and that NEXT and TODO indicate next actions. The tag @SHOP indicates
shopping and is a next action even without the NEXT tag. Finally, if the project contains
the special word IGNORE anywhere, it should not be listed either. In this case you would
start by identifying eligible projects with a tags/todo match ‘+PROJECT/-MAYBE-DONE’, and
then check for TODO, NEXT, @SHOP, and IGNORE in the subtree to identify projects
that are not stuck. The correct customization for this is

(setq org-stuck-projects
’("+PROJECT/-MAYBE-DONE" ("NEXT" "TODO") ("@SHOP")

"\\<IGNORE\\>"))

9.4 Presentation and sorting

Before displaying items in an agenda view, Org-mode visually prepares the items and
sorts them. Each item occupies a single line. The line starts with a prefix that contains
the category (see Section 9.4.1 [Categories], page 57) of the item and other important
information. You can customize the prefix using the option org-agenda-prefix-format.
The prefix is followed by a cleaned-up version of the outline headline associated with the
item.

9.4.1 Categories

The category is a broad label assigned to each agenda item. By default, the category
is simply derived from the file name, but you can also specify it with a special line in the
buffer, like this:

Chapter 9: Agenda Views 58

#+CATEGORY: Thesis

If there are several such lines in a file, each specifies the category for the text below
it (but the first category also applies to any text before the first CATEGORY line). The
display in the agenda buffer looks best if the category is not longer than 10 characters.

9.4.2 Time-of-Day Specifications

Org-mode checks each agenda item for a time-of-day specification. The time can
be part of the time stamp that triggered inclusion into the agenda, for example as in
‘<2005-05-10 Tue 19:00>’. Time ranges can be specified with two time stamps, like
‘<2005-05-10 Tue 20:30>--<2005-05-10 Tue 22:15>’.

In the headline of the entry itself, a time(range) may also appear as plain text (like
‘12:45’ or a ‘8:30-1pm’. If the agenda integrates the Emacs diary (see Section 9.3.1
[Weekly/Daily agenda], page 54), time specifications in diary entries are recognized as well.

For agenda display, Org-mode extracts the time and displays it in a standard 24 hour
format as part of the prefix. The example times in the previous paragraphs would end up
in the agenda like this:

8:30-13:00 Arthur Dent lies in front of the bulldozer
12:45...... Ford Prefect arrives and takes Arthur to the pub
19:00...... The Vogon reads his poem
20:30-22:15 Marwin escorts the Hitchhikers to the bridge

If the agenda is in single-day mode, or for the display of today, the timed entries are
embedded in a time grid, like

8:00...... ------------------
8:30-13:00 Arthur Dent lies in front of the bulldozer
10:00...... ------------------
12:00...... ------------------
12:45...... Ford Prefect arrives and takes Arthur to the pub
14:00...... ------------------
16:00...... ------------------
18:00...... ------------------
19:00...... The Vogon reads his poem
20:00...... ------------------
20:30-22:15 Marwin escorts the Hitchhikers to the bridge

The time grid can be turned on and off with the variable org-agenda-use-time-grid,
and can be configured with org-agenda-time-grid.

9.4.3 Sorting of agenda items

Before being inserted into a view, the items are sorted. How this is done depends on the
type of view.
• For the daily/weekly agenda, the items for each day are sorted. The default order is

to first collect all items containing an explicit time-of-day specification. These entries
will be shown at the beginning of the list, as a schedule for the day. After that, items
remain grouped in categories, in the sequence given by org-agenda-files. Within

Chapter 9: Agenda Views 59

each category, items are sorted by priority (see Section 5.3 [Priorities], page 36), which
is composed of the base priority (2000 for priority ‘A’, 1000 for ‘B’, and 0 for ‘C’), plus
additional increments for overdue scheduled or deadline items.

• For the TODO list, items remain in the order of categories, but within each category,
sorting takes place according to priority (see Section 5.3 [Priorities], page 36).

• For tags matches, items are not sorted at all, but just appear in the sequence in which
they are found in the agenda files.

Sorting can be customized using the variable org-agenda-sorting-strategy.

9.5 Commands in the agenda buffer

Entries in the agenda buffer are linked back to the org file or diary file where they
originate. You are not allowed to edit the agenda buffer itself, but commands are provided
to show and jump to the original entry location, and to edit the org-files “remotely” from
the agenda buffer. In this way, all information is stored only once, removing the risk that
your agenda and note files may diverge.

Some commands can be executed with mouse clicks on agenda lines. For the other
commands, the cursor needs to be in the desired line.

Motion

n Next line (same as 〈up〉).

p Previous line (same as 〈down〉).

View/GoTo org file
mouse-3

〈SPC〉 Display the original location of the item in another window.

L Display original location and recenter that window.

mouse-2

mouse-1

〈TAB〉 Go to the original location of the item in another window. Under Emacs 22,
mouse-1 will also works for this.

〈RET〉 Go to the original location of the item and delete other windows.

f Toggle Follow mode. In Follow mode, as you move the cursor through the
agenda buffer, the other window always shows the corresponding location in
the org file. The initial setting for this mode in new agenda buffers can be set
with the variable org-agenda-start-with-follow-mode.

b Display the entire subtree of the current item in an indirect buffer. With
numerical prefix ARG, go up to this level and then take that tree. If ARG is
negative, go up that many levels. With C-u prefix, do not remove the previously
used indirect buffer.

l Toggle Logbook mode. In Logbook mode, entries that where marked DONE
while logging was on (variable org-log-done) are shown in the agenda, as are
entries that have been clocked on that day.

Chapter 9: Agenda Views 60

Change display
o Delete other windows.

d w m y Switch to day/week/month/year view. When switching to day or week view,
this setting becomes the default for subseqent agenda commands. Since month
and year views are slow to create, the do not become the default.

D Toggle the inclusion of diary entries. See Section 9.3.1 [Weekly/Daily agenda],
page 54.

g Toggle the time grid on and off. See also the variables org-agenda-use-time-
grid and org-agenda-time-grid.

r Recreate the agenda buffer, for example to reflect the changes after modification
of the time stamps of items with S-〈left〉 and S-〈right〉. When the buffer is the
global todo list, a prefix argument is interpreted to create a selective list for a
specific TODO keyword.

s Save all Org-mode buffers in the current Emacs session.

〈right〉 Display the following org-agenda-ndays days. For example, if the display
covers a week, switch to the following week. With prefix arg, go forward that
many times org-agenda-ndays days.

〈left〉 Display the previous dates.

. Goto today.

Remote editing
0-9 Digit argument.

C-_ Undo a change due to a remote editing command. The change is undone both
in the agenda buffer and in the remote buffer.

t Change the TODO state of the item, both in the agenda and in the original
org file.

C-k Delete the current agenda item along with the entire subtree belonging to it
in the original Org-mode file. If the text to be deleted remotely is longer than
one line, the kill needs to be confirmed by the user. See variable org-agenda-
confirm-kill.

$ Archive the subtree corresponding to the current headline.

T Show all tags associated with the current item. Because of inheritance, this
may be more than the tags listed in the line itself.

: Set tags for the current headline.

a Toggle the ARCHIVE tag for the current headline.

, Set the priority for the current item. Org-mode prompts for the priority char-
acter. If you reply with 〈SPC〉, the priority cookie is removed from the entry.

P Display weighted priority of current item.

Chapter 9: Agenda Views 61

+
S-〈up〉 Increase the priority of the current item. The priority is changed in the original

buffer, but the agenda is not resorted. Use the r key for this.

-

S-〈down〉 Decrease the priority of the current item.

C-c C-s Schedule this item

C-c C-d Set a deadline for this item.

S-〈right〉 Change the time stamp associated with the current line by one day into the
future. With prefix argument, change it by that many days. For example, 3
6 5 S-〈right〉 will change it by a year. The stamp is changed in the original org
file, but the change is not directly reflected in the agenda buffer. Use the r key
to update the buffer.

S-〈left〉 Change the time stamp associated with the current line by one day into the
past.

> Change the time stamp associated with the current line to today. The key >
has been chosen, because it is the same as S-. on my keyboard.

I Start the clock on the current item. If a clock is running already, it is stopped
first.

O Stop the previously started clock.

X Cancel the currently running clock.

Calendar commands
c Open the Emacs calendar and move to the date at the agenda cursor.

c When in the calendar, compute and show the Org-mode agenda for the date at
the cursor.

i Insert a new entry into the diary. Prompts for the type of entry (day, weekly,
monthly, yearly, anniversary, cyclic) and creates a new entry in the diary, just
as i d etc. would do in the calendar. The date is taken from the cursor position.

M Show the phases of the moon for the three months around current date.

S Show sunrise and sunset times. The geographical location must be set with
calendar variables, see documentation of the Emacs calendar.

C Convert the date at cursor into many other cultural and historic calendars.

H Show holidays for three month around the cursor date.

C-c C-x C-c

Export a single iCalendar file containing entries from all agenda files.

Exporting to a file
C-x C-w Write the agenda view to a file. Depending on the extension of the selected

file name, the view will be exported as HTML (extension ‘.html’ or ‘.htm’),
Postscript (extension ‘.ps’), or plain text (any other extension). Use the vari-
able org-agenda-exporter-settings to set options for ‘ps-print’ and for
‘htmlize’ to be used during export.

Chapter 9: Agenda Views 62

Quit and Exit
q Quit agenda, remove the agenda buffer.

x Exit agenda, remove the agenda buffer and all buffers loaded by Emacs for the
compilation of the agenda. Buffers created by the user to visit org files will not
be removed.

9.6 Custom agenda views

Custom agenda commands serve two purposes: to store and quickly access frequently
used TODO and tags searches, and to create special composite agenda buffers. Custom
agenda commands will be accessible through the dispatcher (see Section 9.2 [Agenda dis-
patcher], page 54), just like the default commands.

9.6.1 Storing searches

The first application of custom searches is the definition of keyboard shortcuts for fre-
quently used searches, either creating an agenda buffer, or a sparse tree (the latter covering
of course only the current buffer). Custom commands are configured in the variable org-
agenda-custom-commands. You can customize this variable, for example by pressing C-c a

C. You can also directly set it with Emacs Lisp in ‘.emacs’. The following example contains
all valid search types:

(setq org-agenda-custom-commands
’(("w" todo "WAITING")
("W" todo-tree "WAITING")
("u" tags "+BOSS-URGENT")
("v" tags-todo "+BOSS-URGENT")
("U" tags-tree "+BOSS-URGENT")
("f" occur-tree "\\<FIXME\\>")))

The initial single-character string in each entry defines the character you have to press after
the dispatcher command C-c a in order to access the command. The second parameter is
the search type, followed by the string or regular expression to be used for the matching.
The example above will therefore define:

C-c a w as a global search for TODO entries with ‘WAITING’ as the TODO keyword

C-c a W as the same search, but only in the current buffer and displaying the results as
a sparse tree

C-c a u as a global tags search for headlines marked ‘:BOSS:’ but not ‘:URGENT:’

C-c a v as the same search as C-c a u, but limiting the search to headlines that are also
TODO items

C-c a U as the same search as C-c a u, but only in the current buffer and displaying the
result as a sparse tree

C-c a f to create a sparse tree (again: current buffer only) with all entries containing
the word ‘FIXME’.

Chapter 9: Agenda Views 63

9.6.2 Block agenda

Another possibility is the construction of agenda views that comprise the results of sev-
eral commands, each of which creates a block in the agenda buffer. The available commands
include agenda for the daily or weekly agenda (as created with C-c a a), alltodo for the
global todo list (as constructed with C-c a t), and the matching commands discussed above:
todo, tags, and tags-todo. Here are two examples:

(setq org-agenda-custom-commands
’(("h" "Agenda and Home-related tasks"

((agenda)
(tags-todo "HOME")
(tags "GARDEN")))

("o" "Agenda and Office-related tasks"
((agenda)
(tags-todo "WORK")
(tags "OFFICE")))))

This will define C-c a h to create a multi-block view for stuff you need to attend to at home.
The resulting agenda buffer will contain your agenda for the current week, all TODO items
that carry the tag ‘HOME’, and also all lines tagged with ‘GARDEN’. Finally the command C-c

a o provides a similar view for office tasks.

9.6.3 Setting Options for custom commands

Org-mode contains a number of variables regulating agenda construction and display.
The global variables define the behavior for all agenda commands, including the custom
commands. However, if you want to change some settings just for a single custom view,
you can do so. Setting options requires inserting a list of variable names and values at the
right spot in org-agenda-custom-commands. For example:

(setq org-agenda-custom-commands
’(("w" todo "WAITING"

((org-agenda-sorting-strategy ’(priority-down))
(org-agenda-prefix-format " Mixed: ")))

("U" tags-tree "+BOSS-URGENT"
((org-show-following-heading nil)
(org-show-hierarchy-above nil)))))

Now the C-c a w command will sort the collected entries only by priority, and the prefix
format is modified to just say ‘ Mixed:’ instead of giving the category of the entry. The
sparse tags tree of C-c a U will now turn out ultra-compact, because neither the headline
hierarchy above the match, nor the headline following the match will be shown.

For command sets creating a block agenda, org-agenda-custom-commands has two sep-
arate spots for setting options. You can add options that should be valid for just a single
command in the set, and options that should be valid for all commands in the set. The
former are just added to the command entry, the latter must come after the list of com-
mand entries. Going back to the block agenda example (see Section 9.6.2 [Block agenda],
page 63), let’s change the sorting strategy for the C-c a h commands to priority-down,

Chapter 9: Agenda Views 64

but let’s sort the results for GARDEN tags query in the opposite order, priority-up. This
would look like this:

(setq org-agenda-custom-commands
’(("h" "Agenda and Home-related tasks"

((agenda)
(tags-todo "HOME")
(tags "GARDEN"

((org-agenda-sorting-strategy ’(priority-up)))))
((org-agenda-sorting-strategy ’(priority-down))))
("o" "Agenda and Office-related tasks"
((agenda)
(tags-todo "WORK")
(tags "OFFICE")))))

As you see, the values and parenthesis setting is a little complex. When in doubt, use
the customize interface to set this variable - it fully supports its structure. Just one caveat:
When setting options in this interface, the values are just lisp expressions. So if the value
is a string, you need to add the double quotes around the value yourself.

9.6.4 Exporting Agenda Views

If you are away from your computer, it can be very useful to have a printed version of
some agenda views to carry around. Org-mode can export custom agenda views as plain
text, HTML3 and postscript. If you want to do this only occasionally, use the command

C-x C-w Write the agenda view to a file. Depending on the extension of the selected
file name, the view will be exported as HTML (extension ‘.html’ or ‘.htm’),
Postscript (extension ‘.ps’), or plain text (any other extension). Use the vari-
able org-agenda-exporter-settings to set options for ‘ps-print’ and for
‘htmlize’ to be used during export, for example

(setq org-agenda-exporter-settings
’((ps-number-of-columns 2)
(ps-landscape-mode t)
(htmlize-output-type ’css)))

If you need to export certain agenda views frequently, you can associate any custom
agenda command with a list of output file names4. Here is an example that first does define
custom commands for the agenda and the global todo list, together with a number of files to
which to export them. Then we define two block agenda commands and specify filenames
for them as well. File names can be relative to the current working directory, or absolute.

3 You need to install Hrvoje Niksic’ ‘htmlize.el’.
4 If you want to store standard views like the weekly agenda or the global TODO list as well, you need to

define custom commands for them in order to be able to specify filenames.

Chapter 9: Agenda Views 65

(setq org-agenda-custom-commands
’(("X" agenda "" nil ("agenda.html" "agenda.ps"))
("Y" alltodo "" nil ("todo.html" "todo.txt" "todo.ps"))
("h" "Agenda and Home-related tasks"
((agenda)
(tags-todo "HOME")
(tags "GARDEN"))

nil
("~/views/home.html"))
("o" "Agenda and Office-related tasks"
((agenda)
(tags-todo "WORK")
(tags "OFFICE"))

nil
("~/views/office.ps"))))

The extension of the file name determines the type of export. If it is ‘.html’, Org-mode
will use the ‘htmlize.el’ package to convert the buffer to HTML and save it to this file
name. If the extension is ‘.ps’, ps-print-buffer-with-faces is used to produce postscript
output. Any other extension produces a plain ASCII file.

The export files are not created when you use one of those commands interactively.
Instead, there is a special command to produce all specified files in one step:

C-c a e Export all agenda views that have export filenames associated with them.

You can use the options section of the custom agenda commands to also set options for
the export commands. For example:

(setq org-agenda-custom-commands
’(("X" agenda ""

((ps-number-of-columns 2)
(ps-landscape-mode t)
(org-agenda-prefix-format " [] ")
(org-agenda-with-colors nil)
(org-agenda-remove-tags t))

("theagenda.ps"))))

This command sets two options for the postscript exporter, to make it print in two columns
in landscape format - the resulting page can be cut in two and then used in a paper
agenda. The remaining settings modify the agenda prefix to omit category and scheduling
information, and instead include a checkbox to check off items. We also remove the tags to
make the lines compact, and we don’t want to use colors for the black-and-white printer.
Settings specified in org-agenda-exporter-settings will also apply, but the settings in
org-agenda-custom-commands take precedence.
From the command line you may also use

emacs -f org-batch-store-agenda-views -kill

or, if you need to modify some parameters
emacs -eval ’(org-batch-store-agenda-views \

org-agenda-ndays 30 \

Chapter 9: Agenda Views 66

org-agenda-include-diary nil \
org-agenda-files (quote ("~/org/project.org")))’ \

-kill

which will create the agenda views restricted to the file ‘~/org/project.org’, without diary
entries and with 30 days extent.

9.6.5 Extracting Agenda Information for other programs

Org-mode provides commands to access agenda information for the command line in
emacs batch mode. This extracted information can be sent directly to a printer, or it can
be read by a program that does further processing of the data. The first of these commands
is the function org-batch-agenda, that produces an agenda view and sends it as ASCII
text to STDOUT. The command takes a single string as parameter. If the string has length
1, it is used as a key to one of the commands you have configured in org-agenda-custom-
commands, basically any key you can use after C-c a. For example, to directly print the
current TODO list, you could use

emacs -batch -l ~/.emacs -eval ’(org-batch-agenda "t")’ | lpr

If the parameter is a string with 2 or more characters, it is used as a tags/todo match
string. For example, to print your local shopping list (all items with the tag ‘shop’, but
excluding the tag ‘NewYork’), you could use

emacs -batch -l ~/.emacs \
-eval ’(org-batch-agenda "+shop-NewYork")’ | lpr

You may also modify parameters on the fly like this:
emacs -batch -l ~/.emacs \

-eval ’(org-batch-agenda "a" \
org-agenda-ndays 30 \
org-agenda-include-diary nil \
org-agenda-files (quote ("~/org/project.org")))’ \

| lpr

which will produce a 30 day agenda, fully restricted to the Org file ‘~/org/projects.org’,
not even including the diary.

If you want to process the agenda data in more sophisticated ways, you can use the
command org-batch-agenda-csv to get a comma-separated list of values for each agenda
item. Each line in the output will contain a number of fields separated by commas. The
fields in a line are:

category The category of the item
head The headline, without TODO kwd, TAGS and PRIORITY
type The type of the agenda entry, can be

todo selected in TODO match
tagsmatch selected in tags match
diary imported from diary
deadline a deadline
scheduled scheduled
timestamp appointment, selected by timestamp
closed entry was closed on date

Chapter 9: Agenda Views 67

upcoming-deadline warning about nearing deadline
past-scheduled forwarded scheduled item
block entry has date block including date

todo The todo keyword, if any
tags All tags including inherited ones, separated by colons
date The relevant date, like 2007-2-14
time The time, like 15:00-16:50
extra String with extra planning info
priority-l The priority letter if any was given
priority-n The computed numerical priority

Time and date will only be given if a timestamp (or deadline/scheduled) lead to the selection
of the item.

A CSV list like this is very easy to use in a post processing script. For example, here
is a Perl program that gets the TODO list from Emacs/org-mode and prints all the items,
preceded by a checkbox:

#!/usr/bin/perl

define the Emacs command to run
$cmd = "emacs -batch -l ~/.emacs -eval ’(org-batch-agenda-csv \"t\")’";

run it and capture the output
$agenda = qx{$cmd 2>/dev/null};

loop over all lines
foreach $line (split(/\n/,$agenda)) {

get the individual values
($category,$head,$type,$todo,$tags,$date,$time,$extra,
$priority_l,$priority_n) = split(/,/,$line);

proccess and print
print "[] $head\n";

}

Chapter 10: Embedded LaTeX 68

10 Embedded LaTeX

Plain ASCII is normally sufficient for almost all note taking. One exception, however,
are scientific notes which need to be able to contain mathematical symbols and the occa-
sional formula. LaTEX1 is widely used to typeset scientific documents. Org-mode supports
embedding LaTEX code into its files, because many academics are used to read LaTEX
source code, and because it can be readily processed into images for HTML production.

It is not necessary to mark LaTEX macros and code in any special way. If you observe
a few conventions, Org-mode knows how to find it and what to do with it.

10.1 Math symbols

You can use LaTEX macros to insert special symbols like ‘\alpha’ to indicate the Greek
letter, or ‘\to’ to indicate an arrow. Completion for these macros is available, just type
‘\’ and maybe a few letters, and press M-〈TAB〉 to see possible completions. Unlike LaTEX
code, Org-mode allows these macros to be present without surrounding math delimiters,
for example:

Angles are written as Greek letters \alpha, \beta and \gamma.

During HTML export (see Section 11.2 [HTML export], page 71), these symbols are
translated into the proper syntax for HTML, for the above examples this is ‘α’ and
‘→’, respectively.

10.2 Subscripts and Superscripts

Just like in LaTEX, ‘^’ and ‘_’ are used to indicate super- and subscripts. Again, these can
be used without embedding them in math-mode delimiters. To increase the readability of
ASCII text, it is not necessary (but OK) to surround multi-character sub- and superscripts
with curly braces. For example

The mass if the sun is M_sun = 1.989 x 10^30 kg. The radius of
the sun is R_{sun} = 6.96 x 10^8 m.

To avoid interpretation as raised or lowered text, you can quote ‘^’ and ‘_’ with a
backslash: ‘_’ and ‘\^’.

During HTML export (see Section 11.2 [HTML export], page 71), subscript and super-
scripts are surrounded with <sub> and <sup> tags, respectively.

10.3 LaTeX fragments

With symbols, sub- and superscripts, HTML is pretty much at its end when it comes to
representing mathematical formulas2. More complex expressions need a dedicated formula

1 LaTEX is a macro system based on Donald E. Knuth’s TEX system. Many of the features described here
as “LaTEX” are really from TEX, but for simplicity I am blurring this distinction.

2 Yes, there is MathML, but that is not yet fully supported by many browsers, and there is no decent
converter for turning LaTeX of ASCII representations of formulas into MathML. So for the time being,
converting formulas into images seems the way to go.

Chapter 10: Embedded LaTeX 69

processor. To this end, Org-mode can contain arbitrary LaTEX fragments. It provides
commands to preview the typeset result of these fragments, and upon export to HTML, all
fragments will be converted to images and inlined into the HTML document. For this to
work you need to be on a system with a working LaTEX installation. You also need the
‘dvipng’ program, available at http://sourceforge.net/projects/dvipng/. The LaTeX
header that will be used when processing a fragment can be configured with the variable
org-format-latex-header.

LaTEX fragments don’t need any special marking at all. The following snippets will be
identified as LaTeX source code:

• Environments of any kind. The only requirement is that the \begin statement appears
on a new line, preceded by only whitespace.

• Text within the usual LaTEX math delimiters. To avoid conflicts with currency spec-
ifications, single ‘$’ characters are only recognized as math delimiters if the enclosed
text contains at most two line breaks, is directly attached to the ‘$’ characters with no
whitespace in between, and if the closing ‘$’ is followed by whitespace or punctuation.
For the other delimiters, there is no such restriction, so when in doubt, use ‘\(...\)’
as inline math delimiters.

For example:

\begin{equation} % arbitrary environments,
x=\sqrt{b} % even tables, figures
\end{equation} % etc

If $a^2=b$ and \(b=2 \), then the solution must be
either $$ a=+\sqrt{2} $$ or \[a=-\sqrt{2} \].

If you need any of the delimiter ASCII sequences for other purposes, you can configure the
option org-format-latex-options to deselect the ones you do not wish to have interpreted
by the LaTEX converter.

10.4 Processing LaTeX fragments

LaTEX fragments can be processed to produce a preview images of the typeset expres-
sions:

C-c C-x C-l

Produce a preview image of the LaTEX fragment at point and overlay it over
the source code. If there is no fragment at point, process all fragments in the
current entry (between two headlines). When called with a prefix argument,
process the entire subtree. When called with two prefix arguments, or when
the cursor is before the first headline, process the entire buffer.

C-c C-c Remove the overlay preview images.

During HTML export (see Section 11.2 [HTML export], page 71), all LaTEX fragments
are converted into images and inlined into the document if the following setting is active:

(setq org-export-with-LaTeX-fragments t)

Chapter 10: Embedded LaTeX 70

10.5 Using CDLaTeX to enter math

CDLaTeX-mode is a minor mode that is normally used in combination with a major
LaTeX mode like AUCTeX in order to speed-up insertion of environments and math tem-
plates. Inside Org-mode, you can make use of some of the features of cdlatex-mode. You
need to install ‘cdlatex.el’ and ‘texmathp.el’ (the latter comes also with AUCTeX) from
http://www.astro.uva.nl/~dominik/Tools/cdlatex. Don’t turn cdlatex-mode itself un-
der Org-mode, but use the light version org-cdlatex-mode that comes as part of Org-mode.
Turn it on for the current buffer with M-x org-cdlatex-mode, or for all Org-mode files with

(add-hook ’org-mode-hook ’turn-on-org-cdlatex)

When this mode is enabled, the following features are present (for more details see the
documentation of cdlatex-mode):

• Environment templates can be inserted with C-c {.
• The 〈TAB〉 key will do template expansion if the cursor is inside a LaTeX fragment3. For

example, 〈TAB〉 will expand fr to \frac{}{} and position the cursor correctly inside the
first brace. Another 〈TAB〉 will get you into the second brace. Even outside fragments,
〈TAB〉 will expand environment abbreviations at the beginning of a line. For example,
if you write ‘equ’ at the beginning of a line and press 〈TAB〉, this abbreviation will be
expanded to an equation environment. To get a list of all abbreviations, type M-x

cdlatex-command-help.
• Pressing _ and ^ inside a LaTeX fragment will insert these characters together with a

pair of braces. If you use 〈TAB〉 to move out of the braces, and if the braces surround
only a single character or macro, they are removed again (depending on the variable
cdlatex-simplify-sub-super-scripts).

• Pressing the backquote ‘ followed by a character inserts math macros, also outside
LaTeX fragments. If you wait more than 1.5 seconds after the backquote, a help
window will pop up.

• Pressing the normal quote ’ followed by another character modifies the symbol before
point with an accent or a font. If you wait more than 1.5 seconds after the back-
quote, a help window will pop up. Character modification will work only inside LaTEX
fragments, outside the quote is normal.

3 Org-mode has a method to test if the cursor is inside such a fragment, see the documentation of the
function org-inside-LaTeX-fragment-p.

Chapter 11: Exporting 71

11 Exporting

Org-mode documents can be exported into a variety of other formats. For printing and
sharing of notes, ASCII export produces a readable and simple version of an Org-mode file.
HTML export allows you to publish a notes file on the web, while the XOXO format provides
a solid base for exchange with a broad range of other applications. To incorporate entries
with associated times like deadlines or appointments into a desktop calendar program like
iCal, Org-mode can also produce extracts in the iCalendar format. Currently Org-mode
only supports export, not import of these different formats.

When exporting, Org-mode uses special conventions to enrich the output produced. See
Section 11.5 [Text interpretation], page 74, for more details.

C-c C-e Dispatcher for export and publishing commands. Displays a help-window listing
the additional key(s) needed to launch an export or publishing command.

11.1 ASCII export

ASCII export produces a simple and very readable version of an Org-mode file.

C-c C-e a Export as ASCII file. If there is an active region, only the region will be
exported. For an org file ‘myfile.org’, the ASCII file will be ‘myfile.txt’.
The file will be overwritten without warning.

C-c C-e v a

Export only the visible part of the document.

In the exported version, the first 3 outline levels will become headlines, defining a general
document structure. Additional levels will be exported as itemized lists. If you want that
transition to occur at a different level, specify it with a prefix argument. For example,

C-1 C-c C-e a

creates only top level headlines and does the rest as items. When headlines are converted
to items, the indentation of the text following the headline is changed to fit nicely under the
item. This is done with the assumption that the first bodyline indicates the base indentation
of the body text. Any indentation larger than this is adjusted to preserve the layout relative
to the first line. Should there be lines with less indentation than the first, these are left
alone.

11.2 HTML export

Org-mode contains an HTML (XHTML 1.0 strict) exporter with extensive HTML for-
matting, in ways similar to John Grubers markdown language, but with additional support
for tables.

Chapter 11: Exporting 72

11.2.1 HTML export commands

C-c C-e h Export as HTML file ‘myfile.html’.

C-c C-e b Export as HTML file and open it with a browser.

C-c C-e H Export to a temporary buffer, do not create a file.

C-c C-e H Export the active region to a temporary buffer. With prefix arg, do not produce
file header and foot, but just the plain HTML section for the region. This is
good for cut-and-paste operations.

C-c C-e v h

C-c C-e v b

C-c C-e v H

C-c C-e v R

Export only the visible part of the document.

M-x org-export-region-as-html

Convert the region to HTML under the assumption that it was org-mode syntax
before. This is a global command that can be invoked in any buffer.

In the exported version, the first 3 outline levels will become headlines, defining a general
document structure. Additional levels will be exported as itemized lists. If you want that
transition to occur at a different level, specify it with a prefix argument. For example,

C-2 C-c C-e b

creates two levels of headings and does the rest as items.

11.2.2 Quoting HTML tags

Plain ‘<’ and ‘>’ are always transformed to ‘<’ and ‘>’ in HTML export. If you
want to include simple HTML tags which should be interpreted as such, mark them with
‘@’ as in ‘@bold text@’. Note that this really works only for simple tags. For more
extensive HTML that should be copied verbatim to the exported file use either

#+HTML: Literal HTML code for export

or
#+BEGIN_HTML
All lines between these markers are exported literally
#+END_HTML

11.2.3 Links

Internal links (see Section 4.2 [Internal links], page 24) will continue to work in HTML
files only if they match a dedicated ‘<<target>>’. Automatic links created by radio targets
(see Section 4.2.1 [Radio targets], page 25) will also work in the HTML file. Links to
external files will still work if the HTML file is in the same directory as the Org-mode file.
Links to other ‘.org’ files will be translated into HTML links under the assumption that
an HTML version also exists of the linked file. For information related to linking files while
publishing them to a publishing directory see Section 12.1.6 [Publishing links], page 79.

Chapter 11: Exporting 73

11.2.4 Images

HTML export can inline images given as links in the Org-mode file, and it can make an
image the clickable part of a link. By default1, images are inlined if a link does not have
a description. So ‘[[file:myimg.jpg]]’ will be inlined, while ‘[[file:myimg.jpg][the
image]]’ will just produce a link ‘the image’ that points to the image. If the description
part itself is a file: link or a http: URL pointing to an image, this image will be inlined
and activated so that clicking on the image will activate the link. For example, to include
a thumbnail that will link to a high resolution version of the image, you could use:

[[file:highres.jpg][file:thumb.jpg]]

and you could use http addresses just as well.

11.2.5 CSS support

You can also give style information for the exported file. The HTML exporter assigns
the following CSS classes to appropriate parts of the document - your style specifications
may change these:

.todo TODO keywords

.done the DONE keyword

.timestamp time stamp

.timestamp-kwd keyword associated with a time stamp, like SCHEDULED

.tag tag in a headline

.target target for links
The default style specification can be configured through the option org-export-html-

style. If you want to use a file-local style, you may use file variables, best wrapped into a
COMMENT section at the end of the outline tree. For example2:

* COMMENT html style specifications

Local Variables:
org-export-html-style: " <style type=\"text/css\">
p {font-weight: normal; color: gray; }
h1 {color: black; }
</style>"
End:

Remember to execute M-x normal-mode after changing this to make the new style visible
to Emacs. This command restarts org-mode for the current buffer and forces Emacs to re-
evaluate the local variables section in the buffer.

11.3 XOXO export

Org-mode contains an exporter that produces XOXO-style output. Currently, this ex-
porter only handles the general outline structure and does not interpret any additional
Org-mode features.

1 but see the variable org-export-html-inline-images
2 Under Emacs 21, the continuation lines for a variable value should have no ‘#’ at the start of the line.

Chapter 11: Exporting 74

C-c C-e x Export as XOXO file ‘myfile.html’.

C-c C-e v x

Export only the visible part of the document.

11.4 iCalendar export

Some people like to use Org-mode for keeping track of projects, but still prefer a standard
calendar application for anniversaries and appointments. In this case it can be useful to
have deadlines and other time-stamped items in Org-mode files show up in the calendar
application. Org-mode can export calendar information in the standard iCalendar format.
If you also want to have TODO entries included in the export, configure the variable org-
icalendar-include-todo.

C-c C-e i Create iCalendar entries for the current file and store them in the same direc-
tory, using a file extension ‘.ics’.

C-c C-e I Like C-c C-e i, but do this for all files in org-agenda-files. For each of these
files, a separate iCalendar file will be written.

C-c C-e c Create a single large iCalendar file from all files in org-agenda-files and write
it to the file given by org-combined-agenda-icalendar-file.

How this calendar is best read and updated, depends on the application you are using.
The FAQ covers this issue.

11.5 Text interpretation by the exporter

The exporter backends interpret additional structure in the Org-mode file in order to
produce better output.

11.5.1 Comment lines

Lines starting with ‘#’ in column zero are treated as comments and will never be exported.
Also entire subtrees starting with the word ‘COMMENT’ will never be exported.

C-c ; Toggle the COMMENT keyword at the beginning of an entry.

11.5.2 Text before the first headline

Org-mode normally ignores any text before the first headline when exporting, leaving
this region for internal links to speed up navigation etc. However, in publishing-oriented
files, you might want to have some text before the first headline, like a small introduction,
special HTML code with a navigation bar, etc. You can ask to have this part of the file
exported as well by setting the variable org-export-skip-text-before-1st-heading to
nil. On a per-file basis, you can get the same effect with

Chapter 11: Exporting 75

#+OPTIONS: skip:nil

The text before the first headline will be fully processed (see Section 11.5.4 [Enhancing
text], page 75), and the first non-comment line becomes the title of the exported document.
If you need to include literal HTML, use the special constructs described in Section 11.2.2
[Quoting HTML tags], page 72. The table of contents is normally inserted directly before
the first headline of the file. If you would like to get it to a different location, insert the
string [TABLE-OF-CONTENTS] on a line by itself at the desired location.

Finally, if you want to use the space before the first headline for internal purposes, but
still want to place something before the first headline when exporting the file, you can use
the #+TEXT construct:

#+OPTIONS: skip:t
#+TEXT: This text will go before the *first* headline.
#+TEXT: We place the table of contents here:
#+TEXT: [TABLE-OF-CONTENTS]
#+TEXT: This goes between the table of contents and the first headline

11.5.3 Footnotes

Numbers in square brackets are treated as footnotes, so that you can use the Emacs
package ‘footnote.el’ to create footnotes. For example:

The org-mode homepage[1] clearly needs help from
a good web designer.

[1] The link is: http://www.astro.uva.nl/~dominik/Tools/org

Note that the ‘footnote’ package uses C-c ! to invoke its commands. This binding conflicts
with the org-mode command for inserting inactive time stamps. You could use the variable
footnote-prefix to switch footnotes commands to another key. Or, if you are too used
to this binding, you could use org-replace-disputed-keys and org-disputed-keys to
change the settings in Org-mode.

11.5.4 Enhancing text for export

Some of the export backends of Org-mode allow for sophisticated text formatting, this
is true in particular for the HTML backend. Org-mode has a number of typing conventions
that allow to produce a richly formatted output.

• Plain lists ‘-’, ‘*’ or ‘+’ as bullet, or with ‘1.’ or ‘2)’ as enumerator will be recognized
and transformed if the backend supports lists. See See Section 2.8 [Plain lists], page 9.

• You can make words *bold*, /italic/, underlined , =code=, and even
‘+strikethrough+’3.

• A line consisting of only dashes, and at least 5 of them, will be exported as a horizontal
line (‘<hr/>’ in HTML).

• Many TEX macros and entire LaTEX fragments are converted into HTML entities or
images (see Chapter 10 [Embedded LaTeX], page 68).

3 but remember that strikethrough is typographically evil and should never be used.

Chapter 11: Exporting 76

• Tables are transformed into native tables under the exporter, if the export backend
supports this. Data fields before the first horizontal separator line will be formatted as
table header fields.

• If a headline starts with the word ‘QUOTE’, the text below the headline will be typeset
as fixed-width, to allow quoting of computer codes etc. Lines starting with ‘:’ are also
typeset in fixed-width font.

C-c : Toggle fixed-width for entry (QUOTE) or region, see below.

• A double backslash at the end of a line enforces a line break at this position.

If these conversions conflict with your habits of typing ASCII text, they can all be turned
off with corresponding variables. See the customization group org-export-general, and
the following section which explains how to set export options with special lines in a buffer.

11.5.5 Export options

The exporter recognizes special lines in the buffer which provide additional information.
These lines may be put anywhere in the file. The whole set of lines can be inserted into the
buffer with C-c C-e t. For individual lines, a good way to make sure the keyword is correct
is to type ‘#+’ and then use M-〈TAB〉 completion (see Section 13.1 [Completion], page 82).

C-c C-e t Insert template with export options, see example below.
#+TITLE: the title to be shown (default is the buffer name)
#+AUTHOR: the author (default taken from user-full-name)
#+EMAIL: his/her email address (default from user-mail-address)
#+LANGUAGE: language for HTML, e.g. ‘en’ (org-export-default-language)
#+TEXT: Some descriptive text to be inserted at the beginning.
#+TEXT: Several lines may be given.
#+OPTIONS: H:2 num:t toc:t \n:nil @:t ::t |:t ^:t f:t TeX:t ...

The OPTIONS line is a compact form to specify export settings. Here you can:
H: set the number of headline levels for export
num: turn on/off section-numbers
toc: turn on/off table of contents, or set level limit (integer)
\n: turn on/off linebreak-preservation
@: turn on/off quoted HTML tags
:: turn on/off fixed-width sections
|: turn on/off tables
^: turn on/off TEX-like syntax for sub- and superscripts. If

you write "^:{}", a_{b} will be interpreted, but
the simple a_b will be left as it is.

f: turn on/off foototes like this[1].
*: turn on/off emphasized text (bold, italic, underlined)
TeX: turn on/off simple TEX macros in plain text
LaTeX: turn on/off LaTEX fragments
skip: turn on/off skipping the text before the first heading
author: turn on/off inclusion of author name/email into exported file
timestamp: turn on/off inclusion creation time into exported file

Chapter 12: Publishing 77

12 Publishing

Org-mode includes1 a publishing management system that allows you to configure au-
tomatic HTML conversion of projects composed of interlinked org files. This system is
called org-publish. You can also configure org-publish to automatically upload your ex-
ported HTML pages and related attachments, such as images and source code files, to a
web server. Org-publish turns org-mode into a web-site authoring tool.

Org-publish has been contributed to Org-mode by David O’Toole.

12.1 Configuration

Publishing needs significant configuration to specify files, destination and many other
properties of a project.

12.1.1 The variable org-publish-project-alist

Org-publish is configured almost entirely through setting the value of one variable, called
org-publish-project-alist. Each element of the list configures one project, and may be
in one of the two following forms:

("project-name" :property value :property value ...)

or

("project-name" :components ("project-name" "project-name" ...))

In both cases, projects are configured by specifying property values. A project defines
the set of files that will be published, as well as the publishing configuration to use when
publishing those files. When a project takes the second form listed above, the individual
members of the “components” property are taken to be components of the project, which
group together files requiring different publishing options. When you publish such a “meta-
project” all the components will also publish.

12.1.2 Sources and destinations for files

Most properties are optional, but some should always be set. In particular, org-publish
needs to know where to look for source files, and where to put published files.

:base-directory Directory containing publishing source files
:publishing-directory Directory (possibly remote) where output files will be

published.
:preparation-function Function called before starting publishing process, for exam-

ple to run make for updating files to be published.

1 ‘org-publish.el’ is not distributed with Emacs 21, if you are still using Emacs 21, you need you need
to download this file separately.

Chapter 12: Publishing 78

12.1.3 Selecting files

By default, all files with extension ‘.org’ in the base directory are considered part of the
project. This can be modified by setting the properties
:base-extension Extension (without the dot!) of source files. This actually is a

regular expression.

:exclude Regular expression to match file names that should not be pub-
lished, even though they have been selected on the basis of their
extension.

:include List of files to be included regardless of :base-extension and
:exclude.

12.1.4 Publishing Action

Publishing means that a file is copied to the destination directory and possibly trans-
formed in the process. The default transformation is to export Org-mode files as HTML
files, and this is done by the function org-publish-org-to-html which calls the HTML
exporter (see Section 11.2 [HTML export], page 71). Other files like images only need to
be copied to the publishing destination. For non-Org-mode files, you need to specify the
publishing function.
:publishing-function Function executing the publication of a file. This may also be

a list of functions, which will all be called in turn.
The function must accept two arguments: a property list containing at least a

:publishing-directory property, and the name of the file to be published. It should take
the specified file, make the necessary transformation (if any) and place the result into the
destination folder. You can write your own publishing function, but org-publish provides
one for attachments (files that only need to be copied): org-publish-attachment.

12.1.5 Options for the HTML exporter

The property list can be used to set many export options for the HTML exporter. In
most cases, these properties correspond to user variables in Org-mode. The table below
lists these properties along with the variable they belong to. See the documentation string
for the respective variable for details.
:language org-export-default-language
:headline-levels org-export-headline-levels
:section-numbers org-export-with-section-numbers
:table-of-contents org-export-with-toc
:archived-trees org-export-with-archived-trees
:emphasize org-export-with-emphasize
:sub-superscript org-export-with-sub-superscripts
:TeX-macros org-export-with-TeX-macros
:LaTeX-fragments org-export-with-LaTeX-fragments
:fixed-width org-export-with-fixed-width
:timestamps . org-export-with-timestamps

Chapter 12: Publishing 79

:tags . org-export-with-tags
:tables org-export-with-tables
:table-auto-headline org-export-highlight-first-table-line
:style org-export-html-style
:convert-org-links org-export-html-link-org-files-as-html
:inline-images org-export-html-inline-images
:expand-quoted-html org-export-html-expand
:timestamp org-export-html-with-timestamp
:publishing-directory org-export-publishing-directory
:preamble org-export-html-preamble
:postamble org-export-html-postamble
:auto-preamble org-export-html-auto-preamble
:auto-postamble org-export-html-auto-postamble
:author user-full-name
:email user-mail-address

When a property is given a value in org-publish-project-alist, its setting overrides the
value of the corresponding user variable (if any) during publishing. Options set within a
file (see Section 11.5.5 [Export options], page 76), however, override everything.

12.1.6 Links between published files

To create a link from one Org-mode file to another, you would use something like
‘[[file:foo.org][The foo]]’ or simply ‘file:foo.org.’ (see Chapter 4 [Hyperlinks],
page 24). Upon publishing this link becomes a link to ‘foo.html’. In this way, you can
interlink the pages of your "org web" project and the links will work as expected when you
publish them to HTML.

You may also link to related files, such as images. Provided you are careful with relative
pathnames, and provided you have also configured org-publish to upload the related files,
these links will work too. Section 12.2.2 [Complex example], page 80 for an example of this
usage.

Sometime an Org-mode file to be published may contain links that are only valid in your
production environment, but not in the publishing location. In this case, use the property

:link-validation-function Function to validate links

to define a function for checking link validity. This function must accept two arguments,
the file name and a directory relative to which the file name is interpreted in the pro-
duction environment. If this function returns nil, then the HTML generator will only
insert a description into the HTML file, but no link. One option for this function is
org-publish-validate-link which checks if the given file is part of any project in org-
publish-project-alist.

12.1.7 Project page index

The following properties may be used to control publishing of an index of files or summary
page for a given project.

Chapter 12: Publishing 80

:auto-index When non-nil, publish an index during org-publish-current-project
or org-publish-all.

:index-filename Filename for output of index. Defaults to ‘index.org’ (which
becomes ‘index.html’).

:index-title Title of index page. Defaults to name of file.

:index-function Plugin function to use for generation of index. Defaults to org-
publish-org-index, which generates a plain list of links to all
files in the project.

12.2 Sample configuration

Below we provide two example configurations. The first one is a simple project publishing
only a set of Org-mode files. The second example is more complex, with a multi-component
project.

12.2.1 Example: simple publishing configuration

This example publishes a set of Org-mode files to the ‘public_html’ directory on the
local machine.

(setq org-publish-project-alist
’(("org"

:base-directory "~/org/"
:publishing-directory "~/public_html"
:section-numbers nil
:table-of-contents nil
:style "<link rel=stylesheet

href=\"../other/mystyle.css\"
type=\"text/css\">")))

12.2.2 Example: complex publishing configuration

This more complicated example publishes an entire website, including org files converted
to HTML, image files, emacs lisp source code, and stylesheets. The publishing-directory is
remote and private files are excluded.

To ensure that links are preserved, care should be taken to replicate your directory
structure on the web server, and to use relative file paths. For example, if your org files are
kept in ‘~/org’ and your publishable images in ‘~/images’, you’d link to an image with

file:../images/myimage.png

On the web server, the relative path to the image should be the same. You can accomplish
this by setting up an "images" folder in the right place on the webserver, and publishing
images to it.

(setq org-publish-project-alist
’(("orgfiles"

Chapter 12: Publishing 81

:base-directory "~/org/"
:base-extension "org"
:publishing-directory "/ssh:user@host:~/html/notebook/"
:publishing-function org-publish-org-to-html
:exclude "PrivatePage.org" ;; regexp
:headline-levels 3
:section-numbers nil
:table-of-contents nil
:style "<link rel=stylesheet

href=\"../other/mystyle.css\" type=\"text/css\">"
:auto-preamble t
:auto-postamble nil)

("images"
:base-directory "~/images/"
:base-extension "jpg\\|gif\\|png"
:publishing-directory "/ssh:user@host:~/html/images/"
:publishing-function org-publish-attachment)

("other"
:base-directory "~/other/"
:base-extension "css\\|el"
:publishing-directory "/ssh:user@host:~/html/other/"
:publishing-function org-publish-attachment)

("website" :components ("orgfiles" "images" "other"))))

12.3 Triggering publication

Once org-publish is properly configured, you can publish with the following functions:

C-c C-e C Prompt for a specific project and publish all files that belong to it.

C-c C-e P Publish the project containing the current file.

C-c C-e F Publish only the current file.

C-c C-e A Publish all projects.

Org uses timestamps to track when a file has changed. The above functions normally
only publish changed files. You can override this and force publishing of all files by giving
a prefix argument.

Chapter 13: Miscellaneous 82

13 Miscellaneous

13.1 Completion

Org-mode supports in-buffer completion. This type of completion does not make use of
the minibuffer. You simply type a few letters into the buffer and use the key to complete
text right there.

M-〈TAB〉 Complete word at point
• At the beginning of a headline, complete TODO keywords.
• After ‘\’, complete TEX symbols supported by the exporter.
• After ‘*’, complete headlines in the current buffer so that they can be used

in search links like ‘[[*find this headline]]’.
• After ‘:’ in a headline, complete tags. The list of tags is taken from the

variable org-tag-alist (possibly set through the ‘#+TAGS’ in-buffer op-
tion, see Section 6.2 [Setting tags], page 38), or it is created dynamically
from all tags used in the current buffer.

• After ‘:’ and not in a headline, complete property keys. The list of keys is
constructed dynamically from all keys used in the current buffer.

• After ‘[’, complete link abbreviations (see Section 4.5 [Link abbreviations],
page 28).

• After ‘#+’, complete the special keywords like ‘TYP_TODO’ or ‘OPTIONS’
which set file-specific options for Org-mode. When the option keyword
is already complete, pressing M-〈TAB〉 again will insert example settings for
this keyword.

• In the line after ‘#+STARTUP: ’, complete startup keywords, i.e. valid keys
for this line.

• Elsewhere, complete dictionary words using ispell.

13.2 Customization

There are more than 180 variables that can be used to customize Org-mode. For the
sake of compactness of the manual, I am not describing the variables here. A structured
overview of customization variables is available with M-x org-customize. Or select Browse
Org Group from the Org->Customization menu. Many settings can also be activated on a
per-file basis, by putting special lines into the buffer (see Section 13.3 [In-buffer settings],
page 82).

13.3 Summary of in-buffer settings

Org-mode uses special lines in the buffer to define settings on a per-file basis. These
lines start with a ‘#+’ followed by a keyword, a colon, and then individual words defining
a setting. Several setting words can be in the same line, but you can also have multiple

Chapter 13: Miscellaneous 83

lines for the keyword. While these settings are described throughout the manual, here is
a summary. After changing any of those lines in the buffer, press C-c C-c with the cursor
still in the line to activate the changes immediately. Otherwise they become effective only
when the file is visited again in a new Emacs session.

#+ARCHIVE: %s_done::

This line sets the archive location for the agenda file. It applies for all subse-
quent lines until the next ‘#+CATEGORY’ line, or the end of the file. The first
such line also applies to any entries before it. The corresponding variable is
org-archive-location.

#+CATEGORY:
This line sets the category for the agenda file. The category applies for all
subsequent lines until the next ‘#+CATEGORY’ line, or the end of the file. The
first such line also applies to any entries before it.

#+COLUMNS: %25ITEM

Set the default format for columns view. This format applies when columns
view is invoked in location where no COLUMNS property applies.

#+CONSTANTS: name1=value1 ...

Set file-local values for constants to be used in table formulas. This line set
the local variable org-table-formula-constants-local. The global version
of theis variable is org-table-formula-constants. corresponding

#+LINK: linkword replace

These lines (several are allowed) specify link abbreviations. See Section 4.5
[Link abbreviations], page 28. The corresponding variable is org-link-abbrev-
alist.

#+PRIORITIES: highest lowest default

This line sets the limits and the default for the priorities. All three must be
either letters A-Z or numbers 0-9. The highest priority must have a lower ASCII
number that the lowest priority.

#+STARTUP:
This line sets options to be used at startup of org-mode, when an Org-mode
file is being visited. The first set of options deals with the initial visibility
of the outline tree. The corresponding variable for global default settings is
org-startup-folded, with a default value t, which means overview.

overview top-level headlines only
content all headlines
showall no folding at all, show everything

Then there are options for aligning tables upon visiting a file. This is useful
in files containing narrowed table columns. The corresponding variable is org-
startup-align-all-tables, with a default value nil.

align align all tables
noalign don’t align tables on startup

Logging TODO state changes and clock intervals (variable org-log-done) can
be configured using these options.

Chapter 13: Miscellaneous 84

logging record a timestamp when an item is marked DONE
nologging don’t record when items are marked DONE
lognotedone record timestamp and a note when DONE
lognotestate record timestamp and a note when TODO state changes
logrepeat record a note when re-instating a repeating item
nologrepeat do not record when re-instating repeating item
lognoteclock-out record timestamp and a note when clocking out

Here are the options for hiding leading stars in outline headings. The corre-
sponding variables are org-hide-leading-stars and org-odd-levels-only,
both with a default setting nil (meaning showstars and oddeven).

hidestars make all but one of the stars starting a headline invisible.
showstars show all stars starting a headline
odd allow only odd outline levels (1,3,...)
oddeven allow all outline levels

To turn on custom format overlays over time stamps (variables org-put-time-
stamp-overlays and org-time-stamp-overlay-formats), use

customtime overlay custom time format
The following options influence the table spreadsheet (variable constants-
unit-system).

constcgs ‘constants.el’ should use the c-g-s unit system
constSI ‘constants.el’ should use the SI unit system

#+TAGS: TAG1(c1) TAG2(c2)

These lines (several such lines are allowed) specify the legal tags in this file,
and (potentially) the corresponding fast tag selection keys. The corresponding
variable is org-tag-alist.

#+TBLFM: This line contains the formulas for the table directly above the line.

#+TITLE:, #+AUTHOR:, #+EMAIL:, #+LANGUAGE:, #+TEXT:, #+OPTIONS:
These lines provide settings for exporting files. For more details see Sec-
tion 11.5.5 [Export options], page 76.

#+SEQ_TODO: #+TYP_TODO:
These lines set the TODO keywords and their interpretation in the
current file. The corresponding variables are org-todo-keywords and
org-todo-interpretation.

13.4 The very busy C-c C-c key

The key C-c C-c has many purposes in org-mode, which are all mentioned scattered
throughout this manual. One specific function of this key is to add tags to a headline (see
Chapter 6 [Tags], page 38). In many other circumstances it means something like Hey
Org-mode, look here and update according to what you see here. Here is a summary of what
this means in different contexts.
− If there are highlights in the buffer from the creation of a sparse tree, or from clock

display, remove these highlights.

Chapter 13: Miscellaneous 85

− If the cursor is in one of the special #+KEYWORD lines, this triggers scanning the buffer
for these lines and updating the information.

− If the cursor is inside a table, realign the table. This command works even if the
automatic table editor has been turned off.

− If the cursor is on a #+TBLFM line, re-apply the formulas to the entire table.
− If the cursor is inside a table created by the ‘table.el’ package, activate that table.
− If the current buffer is a remember buffer, close the note and file it. With a prefix

argument, file it, without further interaction, to the default location.
− If the cursor is on a <<<target>>>, update radio targets and corresponding links in

this buffer.
− If the cursor is in a property line or at the start or end of a property drawer, offer

property commands.
− If the cursor is in a plain list item with a checkbox, toggle the status of the checkbox.
− If the cursor is on a numbered item in a plain list, renumber the ordered list.

13.5 A cleaner outline view

Some people find it noisy and distracting that the Org-mode headlines are starting with
a potentially large number of stars. For example the tree from Section 2.2 [Headlines],
page 4:

* Top level headline
** Second level
*** 3rd level

some text
*** 3rd level

more text
* Another top level headline

Unfortunately this is deeply ingrained into the code of Org-mode and cannot be easily
changed. You can, however, modify the display in such a way that all leading stars become
invisible and the outline more easy to read. To do this, customize the variable org-hide-
leading-stars like this:

(setq org-hide-leading-stars t)

or change this on a per-file basis with one of the lines (anywhere in the buffer)
#+STARTUP: showstars
#+STARTUP: hidestars

Press C-c C-c with the cursor in a ‘STARTUP’ line to activate the modifications.
With stars hidden, the tree becomes:

* Top level headline
* Second level
* 3rd level
some text

* 3rd level
more text

Chapter 13: Miscellaneous 86

* Another top level headline

Note that the leading stars are not truly replaced by whitespace, they are only fontified
with the face org-hide that uses the background color as font color. If you are not using
either white or black background, you may have to customize this face to get the wanted
effect. Another possibility is to set this font such that the extra stars are almost invisible,
for example using the color grey90 on a white background.

Things become cleaner still if you skip all the even levels and use only odd levels 1, 3,
5..., effectively adding two stars to go from one outline level to the next:

* Top level headline
* Second level
* 3rd level

some text
* 3rd level

more text
* Another top level headline

In order to make the structure editing and export commands handle this convention cor-
rectly, use

(setq org-odd-levels-only t)

or set this on a per-file basis with one of the following lines (don’t forget to press C-c C-c

with the cursor in the startup line to activate changes immediately).
#+STARTUP: odd
#+STARTUP: oddeven

You can convert an Org-mode file from single-star-per-level to the double-star-per-level
convention with M-x org-convert-to-odd-levels RET in that file. The reverse operation
is M-x org-convert-to-oddeven-levels.

13.6 Using org-mode on a tty

Org-mode uses a number of keys that are not accessible on a tty. This applies to most
special keys like cursor keys, 〈TAB〉 and 〈RET〉, when these are combined with modifier keys
like 〈Meta〉 and/or 〈Shift〉. Org-mode uses these bindings because it needs to provide keys
for a large number of commands, and because these keys appeared particularly easy to
remember. In order to still be able to access the core functionality of Org-mode on a tty,
alternative bindings are provided. Here is a complete list of these bindings, which are
obviously more cumbersome to use. Note that sometimes a work-around can be better. For
example changing a time stamp is really only fun with S-〈cursor〉 keys. On a tty you would
rather use C-c . to re-insert the timestamp.
Default Alternative 1 Alternative 2
S-〈TAB〉 C-u 〈TAB〉
M-〈left〉 C-c C-x l 〈Esc〉 〈left〉
M-S-〈left〉 C-c C-x L

M-〈right〉 C-c C-x r 〈Esc〉 〈right〉
M-S-〈right〉 C-c C-x R

M-〈up〉 C-c C-x u 〈Esc〉 〈up〉

Chapter 13: Miscellaneous 87

M-S-〈up〉 C-c C-x U

M-〈down〉 C-c C-x d 〈Esc〉 〈down〉
M-S-〈down〉 C-c C-x D

S-〈RET〉 C-c C-x c

M-〈RET〉 C-c C-x m 〈Esc〉 〈RET〉
M-S-〈RET〉 C-c C-x M

S-〈left〉 C-c 〈left〉
S-〈right〉 C-c 〈right〉
S-〈up〉 C-c 〈up〉
S-〈down〉 C-c 〈down〉
C-S-〈left〉 C-c C-x 〈left〉
C-S-〈right〉 C-c C-x 〈right〉

13.7 Interaction with other packages

Org-mode lives in the world of GNU Emacs and interacts in various ways with other
code out there.

13.7.1 Packages that Org-mode cooperates with

‘calc.el’ by Dave Gillespie
Org-mode uses the calc package for implementing spreadsheet functionality in
its tables (see Section 3.5 [The spreadsheet], page 16). Org-mode checks for
the availability of calc by looking for the function calc-eval which should
be autoloaded in your setup if calc has been installed properly. As of Emacs
22, calc is part of the Emacs distribution. Another possibility for interaction
between the two packages is using calc for embedded calculations. See section
“Embedded Mode” in GNU Emacs Calc Manual.

‘constants.el’ by Carsten Dominik
In a table formula (see Section 3.5 [The spreadsheet], page 16), it is possible
to use names for natural constants or units. Instead of defining your own con-
stants in the variable org-table-formula-constants, install the ‘constants’
package which defines a large number of constants and units, and lets you use
unit prefixes like ‘M’ for ‘Mega’ etc. You will need version 2.0 of this package,
available at http://www.astro.uva.nl/~dominik/Tools. Org-mode checks
for the function constants-get, which has to be autoloaded in your setup. See
the installation instructions in the file ‘constants.el’.

‘cdlatex.el’ by Carsten Dominik
Org-mode can make use of the cdlatex package to efficiently enter LaTEX frag-
ments into Org-mode files. See Section 10.5 [CDLaTeX mode], page 70.

‘remember.el’ by John Wiegley
Org mode cooperates with remember, see Section 4.8 [Remember], page 29.
‘Remember.el’ is not part of Emacs, find it on the web.

Chapter 13: Miscellaneous 88

‘table.el’ by Takaaki Ota
Complex ASCII tables with automatic line wrapping, column- and
row-spanning, and alignment can be created using the Emacs table package
by Takaaki Ota (http://sourceforge.net/projects/table, and also part
of Emacs 22). When 〈TAB〉 or C-c C-c is pressed in such a table, Org-mode
will call table-recognize-table and move the cursor into the table.
Inside a table, the keymap of Org-mode is inactive. In order to execute
Org-mode-related commands, leave the table.

C-c C-c Recognize ‘table.el’ table. Works when the cursor is in a table.el
table.

C-c ~ Insert a table.el table. If there is already a table at point, this com-
mand converts it between the table.el format and the Org-mode for-
mat. See the documentation string of the command org-convert-
table for the restrictions under which this is possible.

‘table.el’ is part of Emacs 22.

‘footnote.el’ by Steven L. Baur
Org-mode recognizes numerical footnotes as provided by this package (see Sec-
tion 11.5.3 [Footnotes], page 75).

13.7.2 Packages that lead to conflicts with Org-mode

‘allout.el’ by Ken Manheimer
Startup of Org-mode may fail with the error message (wrong-type-argument
keymapp nil) when there is an outdated version ‘allout.el’ on the load path,
for example the version distributed with Emacs 21.x. Upgrade to Emacs 22
and this problem will disappear. If for some reason you cannot do this, make
sure that org.el is loaded before ‘allout.el’, for example by putting (require
’org) early enough into your ‘.emacs’ file.

‘CUA.el’ by Kim. F. Storm
Keybindings in Org-mode conflict with the S-<cursor> keys used by CUA-
mode (as well as pc-select-mode and s-region-mode) to select and extend the
region. If you want to use one of these packages along with Org-mode, configure
the variable org-CUA-compatible. When set, Org-mode will move the following
keybindings in org-mode files, and in the agenda buffer (but not during date
selection).

S-UP -> M-p S-DOWN -> M-n
S-LEFT -> M-- S-RIGHT -> M-+

Yes, these are unfortunately more difficult to remember. If you want to have
other replacement keys, look at the variable org-disputed-keys.

‘windmove.el’ by Hovav Shacham
Also this package uses the S-<cursor> keys, so everything written in the para-
graph above about CUA mode also applies here.

http://sourceforge.net/projects/table

Chapter 13: Miscellaneous 89

‘footnote.el’ by Steven L. Baur
Org-mode supports the syntax of the footnote package, but only the numeri-
cal footnote markers. Also, the default key for footnote commands, C-c ! is
already used by org-mode. You could use the variable footnote-prefix to
switch footnotes commands to another key. Or, you could use org-replace-
disputed-keys and org-disputed-keys to change the settings in Org-mode.

13.8 Bugs

Here is a list of things that should work differently, but which I have found too hard to
fix.
• If a table field starts with a link, and if the corresponding table column is narrowed

(see Section 3.2 [Narrow columns], page 14) to a width too small to display the link,
the field would look entirely empty even though it is not. To prevent this, Org-mode
throws an error. The work-around is to make the column wide enough to fit the link,
or to add some text (at least 2 characters) before the link in the same field.

• Narrowing table columns does not work on XEmacs, because the format function does
not transport text properties.

• Text in an entry protected with the ‘QUOTE’ keyword should not autowrap.
• When the application called by C-c C-o to open a file link fails (for example because

the application does not exist or refuses to open the file), it does so silently. No error
message is displayed.

• Recalculating a table line applies the formulas from left to right. If a formula uses
calculated fields further down the row, multiple recalculation may be needed to get
all fields consistent. You may use the command org-table-iterate (C-u C-c *) to
recalculate until convergence.

• A single letter cannot be made bold, for example ‘*a*’.
• The exporters work well, but could be made more efficient.

Appendix A: Extensions, Hooks and Hacking 90

Appendix A Extensions, Hooks and Hacking

This appendix lists extensions for Org-mode written by other authors. It also covers
some aspects where users can extend the functionality of Org-mode.

A.1 Third-party extensions for Org-mode

The following extensions for Org-mode have been written by other people:

‘org-publish.el’ by David O’Toole
This package provides facilities for publishing related sets of Org-mode files
together with linked files like images as webpages. It is highly configurable and
can be used for other publishing purposes as well. As of Org-mode version
4.30, ‘org-publish.el’ is part of the Org-mode distribution. It is not yet part
of Emacs, however, a delay caused by the preparations for the 22.1 release.
In the mean time, ‘org-publish.el’ can be downloaded from David’s site:
http://dto.freeshell.org/e/org-publish.el.

‘org-mouse.el’ by Piotr Zielinski
This package implements extended mouse functionality for Org-mode. It
allows you to cycle visibility and to edit the document structure with the
mouse. Best of all, it provides a context-sensitive menu on 〈mouse-3〉 that
changes depending on the context of a mouse-click. As of Org-mode version
4.53, ‘org-mouse.el’ is part of the Org-mode distribution. It is not yet part
of Emacs, however, a delay caused by the preparations for the 22.1 release.
In the mean time, ‘org-mouse.el’ can be downloaded from Piotr’s site:
http://www.cl.cam.ac.uk/~pz215/files/org-mouse.el.

‘org-blog.el’ by David O’Toole
A blogging plug-in for ‘org-publish.el’.
http://dto.freeshell.org/notebook/OrgMode.html.

‘blorg.el’ by Bastien Guerry
Publish Org-mode files as blogs. http://www.cognition.ens.fr/~guerry/blorg.html.

‘org2rem.el’ by Bastien Guerry
Translates Org-mode files into something readable by Remind.
http://www.cognition.ens.fr/~guerry/u/org2rem.el.

Appendix A: Extensions, Hooks and Hacking 91

A.2 Tables in arbitrary syntax

Since Orgtbl-mode can be used as a minor mode in arbitrary buffers, a frequent feature
request has been to make it work with native tables in specific languages, for example
LaTeX. However, this is extremely hard to do in a general way, would lead to a customization
nightmare, and would take away much of the simplicity of the Orgtbl-mode table editor.

This appendix describes a different approach. We keep the Orgtbl-mode table in its
native format (the source table), and use a custom function to translate the table to the
correct syntax, and to install it in the right location (the target table). This puts the burden
of writing conversion functions on the user, but it allows for a very flexible system.

A.2.1 Radio tables

To define the location of the target table, you first need to create two lines that are
comments in the current mode, but contain magic words for Orgtbl-mode to find. Orgtbl-
mode will insert the translated table between these lines, replacing whatever was there
before. For example:

/* BEGIN RECEIVE ORGTBL table_name */
/* END RECEIVE ORGTBL table_name */

Just above the source table, we put a special line that tells Orgtbl-mode how to translate
this table and where to install it. For example:

#+ORGTBL: SEND table_name translation_function arguments....

table_name is the reference name for the table that is also used in the receiver lines.
translation_function is the Lisp function that does the translation. Furthermore, the
line can contain a list of arguments (alternating key and value) at the end. The arguments
will be passed as a property list to the translation function for interpretation. A few
standard parameters are already recognized and acted upon before the translation function
is called:

:skip N Skip the first N lines of the table. Hlines do count!

:skipcols (n1 n2 ...)
List of columns that should be skipped. If the table has a column with calcu-
lation marks, that column is automatically discarded as well. Please note that
the translator function sees the table after the removal of these columns, the
function never knows that there have been additional columns.

The one problem remaining is how to keep the source table in the buffer without disturbing
the normal workings of the file, for example during compilation of a C file or processing of
a LaTeX file. There are a number of different solutions:
• The table could be placed in a block comment if that is supported by the language.

For example, in C-mode you could wrap the table between ‘/*’ and ‘*/’ lines.
• Sometimes it is possible to put the table after some kind of END statement, for example

‘\bye’ in TeX and ‘\end{document}’ in LaTeX.
• You can just comment the table line by line whenever you want to process the file,

and uncomment it whenever you need to edit the table. This only sounds tedious - the

Appendix A: Extensions, Hooks and Hacking 92

command M-x orgtbl-toggle-comment does make this comment-toggling very easy,
in particular if you bind it to a key.

A.2.2 A LaTeX example

The best way to wrap the source table in LaTeX is to use the comment environment
provided by ‘comment.sty’. It has to be activated by placing \usepackage{comment} into
the document header. Orgtbl-mode can insert a radio table skeleton1 with the command
M-x orgtbl-insert-radio-table. You will be prompted for a table name, lets say we use
‘salesfigures’. You will then get the following template:

% BEGIN RECEIVE ORGTBL salesfigures
% END RECEIVE ORGTBL salesfigures
\begin{comment}
#+ORGTBL: SEND salesfigures orgtbl-to-latex
| | |
\end{comment}

The #+ORGTBL: SEND line tells orgtbl-mode to use the function orgtbl-to-latex to convert
the table into LaTeX and to put it into the receiver location with name salesfigures. You
may now fill in the table, feel free to use the spreadsheet features2:

% BEGIN RECEIVE ORGTBL salesfigures
% END RECEIVE ORGTBL salesfigures
\begin{comment}
#+ORGTBL: SEND salesfigures orgtbl-to-latex
| Month | Days | Nr sold | per day |
|-------+------+---------+---------|
Jan	23	55	2.4
Feb	21	16	0.8
March	22	278	12.6
#+TBLFM: $4=$3/$2;%.1f
% $ (optional extra dollar to keep font-lock happy, see footnote)
\end{comment}

When you are done, press C-c C-c in the table to get the converted table inserted between
the two marker lines.

Now lets assume you want to make the table header by hand, because you want to
control how columns are aligned etc. In this case we make sure that the table translator
does skip the first 2 lines of the source table, and tell the command to work as a splice, i.e.
to not produce header and footer commands of the target table:

\begin{tabular}{lrrr}
Month & \multicolumn{1}{c}{Days} & Nr.\ sold & per day\\

1 By default this works only for LaTeX, HTML, and TeXInfo. Configure the variable orgtbl-radio-

tables to install templates for other modes.
2 If the ‘#+TBLFM’ line contains an odd number of dollar characters, this may cause problems with font-lock

in latex-mode. As shown in the example you can fix this by adding an extra line inside the comment

environment that is used to balance the dollar expressions. If you are using AUCTeX with the font-latex
library, a much better solution is to add the comment environment to the variable LaTeX-verbatim-

environments.

Appendix A: Extensions, Hooks and Hacking 93

% BEGIN RECEIVE ORGTBL salesfigures
% END RECEIVE ORGTBL salesfigures
\end{tabular}
%
\begin{comment}
#+ORGTBL: SEND salesfigures orgtbl-to-latex :splice t :skip 2
| Month | Days | Nr sold | per day |
|-------+------+---------+---------|
Jan	23	55	2.4
Feb	21	16	0.8
March	22	278	12.6
#+TBLFM: $4=$3/$2;%.1f
\end{comment}

The LaTeX translator function orgtbl-to-latex is already part of Orgtbl-mode. It
uses a tabular environment to typeset the table and marks horizontal lines with \hline.
Furthermore, it interprets the following parameters:

:splice nil/t
When set to t, return only table body lines, don’t wrap them into a tabular
environment. Default is nil.

:fmt fmt A format to be used to wrap each field, should contain %s for the original field
value. For example, to wrap each field value in dollars, you could use :fmt
"$%s$". This may also be a property list with column numbers and formats.
for example :fmt (2 "$%s$" 4 "%s\\%%").

:efmt efmt
Use this format to print numbers with exponentials. The format should have %s
twice for inserting mantissa and exponent, for example "%s\\times10^{%s}".
The default is "%s\\,(%s)". This may also be a property list with column
numbers and formats, for example :efmt (2 "$%s\\times10^{%s}$" 4
"$%s\\cdot10^{%s}$"). After efmt has been applied to a value, fmt will also
be applied.

A.2.3 Translator functions

Orgtbl-mode has several translator functions built-in: orgtbl-to-latex, orgtbl-to-
html, and orgtbl-to-texinfo. Except for orgtbl-to-html3, these all use a generic trans-
lator, orgtbl-to-generic. For example, orgtbl-to-latex itself is a very short function
that computes the column definitions for the tabular environment, defines a few field and
line separators and then hands over to the generic translator. Here is the entire code:

3 The HTML translator uses the same code that produces tables during HTML export.

Appendix A: Extensions, Hooks and Hacking 94

(defun orgtbl-to-latex (table params)
"Convert the orgtbl-mode TABLE to LaTeX."
(let* ((alignment (mapconcat (lambda (x) (if x "r" "l"))

org-table-last-alignment ""))
(params2
(list
:tstart (concat "\\begin{tabular}{" alignment "}")
:tend "\\end{tabular}"
:lstart "" :lend " \\\\" :sep " & "
:efmt "%s\\,(%s)" :hline "\\hline")))

(orgtbl-to-generic table (org-combine-plists params2 params))))

As you can see, the properties passed into the function (variable PARAMS) are combined
with the ones newly defined in the function (variable PARAMS2). The ones passed into
the function (i.e. the ones set by the ‘ORGTBL SEND’ line) take precedence. So if you would
like to use the LaTeX translator, but wanted the line endings to be ‘\\[2mm]’ instead of
the default ‘\\’, you could just overrule the default with

#+ORGTBL: SEND test orgtbl-to-latex :lend " \\\\[2mm]"

For a new language, you can either write your own converter function in analogy with
the LaTeX translator, or you can use the generic function directly. For example, if you have
a language where a table is started with ‘!BTBL!’, ended with ‘!ETBL!’, and where table
lines are started with ‘!BL!’, ended with ‘!EL!’ and where the field separator is a TAB, you
could call the generic translator like this (on a single line!):

#+ORGTBL: SEND test orgtbl-to-generic :tstart "!BTBL!" :tend "!ETBL!"
:lstart "!BL! " :lend " !EL!" :sep "\t"

Please check the documentation string of the function orgtbl-to-generic for a full list of
parameters understood by that function and remember that you can pass each of them into
orgtbl-to-latex, orgtbl-to-texinfo, and any other function using the generic function.

Of course you can also write a completely new function doing complicated things the
generic translator cannot do. A translator function takes two arguments. The first argument
is the table, a list of lines, each line either the symbol hline or a list of fields. The second
argument is the property list containing all parameters specified in the ‘#+ORGTBL: SEND’
line. The function must return a single string containing the formatted table. If you write
a generally useful translator, please post it on emacs-orgmode@gnu.org so that others can
benefit from your work.

A.3 Dynamic blocks

Org-mode documents can contain dynamic blocks. These are specially marked regions
that are updated by some user-written function. A good example for such a block is the
clock table inserted by the command C-c C-x C-r (see Section 8.4.3 [Clocking work time],
page 51).

Dynamic block are enclosed by a BEGIN-END structure that assigns a name to the
block and can also specify parameters for the function producing the content of the block.

#+BEGIN: myblock :parameter1 value1 :parameter2 value2 ...

Appendix A: Extensions, Hooks and Hacking 95

#+END:

Dynamic blocks are updated with the following commands

C-c C-x C-u

Update dynamic block at point.

C-u C-c C-x C-u

Update all dynamic blocks in the current file.

Updating a dynamic block means to remove all the text between BEGIN and END,
parse the BEGIN line for parameters and then call the specific writer function for this
block to insert the new content. For a block with name myblock, the writer function is
org-dblock-write:myblock with as only parameter a property list with the parameters
given in the begin line. Here is a trivial example of a block that keeps track of when the
block update function was last run:

#+BEGIN: block-update-time :format "on %m/%d/%Y at %H:%M"

#+END:

The corresponding block writer function could look like this:
(defun org-dblock-write:block-update-time (params)

(let ((fmt (or (plist-get params :format) "%d. %m. %Y")))
(insert "Last block update at: "

(format-time-string fmt (current-time)))))

If you want to make sure that all dynamic blocks are always up-to-date, you could add
the function org-update-all-dblocks to a hook, for example before-save-hook. org-
update-all-dblocks is written in a way that is does nothing in buffers that are not in
Org-mode.

A.4 Special Agenda Views

Org-mode provides a special hook that can be used to narrow down the selection made
by any of the agenda views. You may specify a function that is used at each match to verify
if the match should indeed be part of the agenda view, and if not, how much should be
skipped.

Let’s say you want to produce a list of projects that contain a WAITING tag anywhere
in the project tree. Let’s further assume that you have marked all tree headings that define
a project with the todo keyword PROJECT. In this case you would run a todo search for
the keyword PROJECT, but skip the match unless there is a WAITING tag anywhere in
the subtree belonging to the project line.

To achieve this, you must write a function that searches the subtree for the tag. If
the tag is found, the function must return nil to indicate that this match should not be
skipped. If there is no such tag, return the location of the end of the subtree, to indicate
that search should continue from there.

(defun my-skip-unless-waiting ()
"Skip trees that are not waiting"

Appendix A: Extensions, Hooks and Hacking 96

(let ((subtree-end (save-excursion (org-end-of-subtree t))))
(if (re-search-forward ":WAITING:" subtree-end t)

nil ; tag found, do not skip
subtree-end))) ; tag not found, continue after end of subtree

Furthermore you must write a command that uses let to temporarily put this function
into the variable org-agenda-skip-function, sets the header string for the agenda buffer,
and calls the todo-list generator while asking for the specific TODO keyword PROJECT.
The function must also accept one argument MATCH, but it can choose to ignore it4 (as
we do in the example below). Here is the example:

(defun my-org-waiting-projects (&optional match)
"Produce a list of projects that contain a WAITING tag.

MATCH is being ignored."
(interactive)
(let ((org-agenda-skip-function ’my-skip-unless-waiting)

(org-agenda-overriding-header "Projects waiting for something: "))
;; make the list
(org-todo-list "PROJECT")))

A.5 Using the property API

Here is a description of the functions that can be used to work with properties.

[Function]org-entry-properties &optional pom which
Get all properties of the entry at point-or-marker POM. This includes the TODO
keyword, the tags, time strings for deadline, scheduled, and clocking, and any addi-
tional properties defined in the entry. The return value is an alist, keys may occur
multiple times if the property key was used several times. POM may also be nil, in
which case the current entry is used. If WHICH is nil or ‘all’, get all properties. If
WHICH is ‘special’ or ‘standard’, only get that subclass.

[Function]org-entry-get pom property &optional inherit
Get value of PROPERTY for entry at point-or-marker POM. If INHERIT is non-
nil and the entry does not have the property, then also check higher levels of the
hierarchy.

[Function]org-entry-delete pom property
Delete the property PROPERTY from entry at point-or-marker POM.

[Function]org-entry-put pom property value
Set PROPERTY to VALUE for entry at point-or-marker POM.

[Function]org-buffer-property-keys &optional include-specials
Get all property keys in the current buffer.

[Function]org-insert-property-drawer
Insert a property drawer at point.

4 MATCH must be present in case you want to define a custom command for producing this special list.
Custom commands always supply the MATCH argument, but it can be empty if you do not specify it
while defining the command(see Section 9.6 [Custom agenda views], page 62).

Appendix B: History and Acknowledgments 97

Appendix B History and Acknowledgments

Org-mode was borne in 2003, out of frustration over the user interface of the Emacs
outline-mode. I was trying to organize my notes and projects, and using Emacs seemed to
be the natural way to go. However, having to remember eleven different commands with two
or three keys per command, only to hide and unhide parts of the outline tree, that seemed
entirely unacceptable to me. Also, when using outlines to take notes, I constantly want
to restructure the tree, organizing it parallel to my thoughts and plans. Visibility cycling
and structure editing were originally implemented in the package ‘outline-magic.el’, but
quickly moved to the more general ‘org.el’. As this environment became comfortable for
project planning, the next step was adding TODO entries, basic time stamps, and table
support. These areas highlight the two main goals that Org-mode still has today: To create
a new, outline-based, plain text mode with innovative and intuitive editing features, and to
incorporate project planning functionality directly into a notes file.

Since the first release, literally thousands of emails to me or on emacs-orgmode@gnu.org
have provided a constant stream of bug reports, feedback, new ideas, and sometimes patches
and add-on code. Many thanks to everyone who has helped to improve this package. I am
trying to keep here a list of the people who had significant influence in shaping one or more
aspects of Org-mode. The list may not be complete, if I have forgotten someone, please
accept my apologies and let me know.
• Russel Adams came up with the idea for drawers.
• Thomas Baumann contributed the code for links to the MH-E email system.
• Alex Bochannek provided a patch for rounding time stamps.
• Charles Cave’s suggestion sparked the implementation of templates for Remember.
• Pavel Chalmoviansky influenced the agenda treatment of items with specified time.
• Gregory Chernov patched support for lisp forms into table calculations and improved

XEmacs compatibility, in particular by porting ‘nouline.el’ to XEmacs.
• Sacha Chua suggested to copy some linking code from Planner.
• Eddward DeVilla proposed and tested checkbox statistics. He also came up with the

idea of properties, and that there should be an API for them.
• Kees Dullemond used to edit projects lists directly in HTML and so inspired some of

the early development, including HTML export. He also asked for a way to narrow
wide table columns.

• Christian Egli converted the documentation into TeXInfo format, patched CSS format-
ting into the HTML exporter, and inspired the agenda.

• David Emery provided a patch for custom CSS support in exported HTML agendas.
• Nic Ferrier contributed mailcap and XOXO support.
• John Foerch figured out how to make incremental search show context around a match

in a hidden outline tree.
• Niels Giessen had the idea to automatically archive DONE trees.
• Bastien Guerry provided extensive feedback and some patches, and translated David

O’Toole’s tutorial into French.
• Kai Grossjohann pointed out key-binding conflicts with other packages.

Appendix B: History and Acknowledgments 98

• Scott Jaderholm proposed footnotes, control over whitespace between folded entries,
and column view for properties.

• Shidai Liu ("Leo") asked for embedded LaTeX and tested it. He also provided frequent
feedback and some patches.

• Jason F. McBrayer suggested agenda export to CSV format.
• Dmitri Minaev sent a patch to set priority limits on a per-file basis.
• Stefan Monnier provided a patch to keep the Emacs-Lisp compiler happy.
• Rick Moynihan proposed to allow multiple TODO sequences in a file.
• Todd Neal provided patches for links to Info files and elisp forms.
• Tim O’Callaghan suggested in-file links, search options for general file links, and TAGS.
• Takeshi Okano translated the manual and David O’Toole’s tutorial into Japanese.
• Oliver Oppitz suggested multi-state TODO items.
• Scott Otterson sparked the introduction of descriptive text for links, among other

things.
• Pete Phillips helped during the development of the TAGS feature, and provided fre-

quent feedback.
• T.V. Raman reported bugs and suggested improvements.
• Matthias Rempe (Oelde) provided ideas, Windows support, and quality control.
• Kevin Rogers contributed code to access VM files on remote hosts.
• Frank Ruell solved the mystery of the keymapp nil bug, a conflict with ‘allout.el’.
• Jason Riedy sent a patch to fix a bug with export of TODO keywords.
• Philip Rooke created the Org-mode reference card and provided lots of feedback.
• Christian Schlauer proposed angular brackets around links, among other things.
• Linking to VM/BBDB/GNUS was inspired by Tom Shannon’s ‘organizer-mode.el’.
• Daniel Sinder came up with the idea of internal archiving by locking subtrees.
• Dale Smith proposed link abbreviations.
• David O’Toole wrote ‘org-publish.el’ and drafted the manual chapter about pub-

lishing.
• Jürgen Vollmer contributed code generating the table of contents in HTML output.
• Chris Wallace provided a patch implementing the ‘QUOTE’ keyword.
• David Wainberg suggested archiving, and improvements to the linking system.
• John Wiegley wrote ‘emacs-wiki.el’ and ‘planner.el’. The development of Org-

mode was fully independent, and both systems are really different beasts in their basic
ideas and implementation details. I later looked at John’s code, however, and learned
from his implementation of (i) links where the link itself is hidden and only a description
is shown, and (ii) popping up a calendar to select a date.

• Carsten Wimmer suggested some changes and helped fix a bug in linking to GNUS.
• Roland Winkler requested additional keybindings to make Org-mode work on a tty.
• Piotr Zielinski wrote ‘org-mouse.el’, proposed agenda blocks and contributed various

ideas and code snippets.

Index 99

Index

A
abbreviation, links . 28
acknowledgments . 97
action, for publishing . 78
activation . 2
active region . 7, 14, 71, 72
agenda . 54
agenda dispatcher . 54
agenda files . 53
agenda files, removing buffers 62
agenda views . 53
agenda views, custom . 62
agenda views, exporting 61, 64
agenda views, user-defined . 95
agenda, pipe . 66
agenda, with block views . 63
align, STARTUP keyword 83
‘allout.el’ . 88
angular brackets, around links 26
API, for properties . 45, 96
archive locations . 8
archiving . 7
ASCII export . 71
author . 3
author info, in export . 76
autoload . 2

B
backtrace of an error . 3
BBDB links . 25
block agenda . 63
‘blorg.el’ . 90
bold text . 75
Boolean logic, for tag searches 40
bug reports . 3
bugs . 89

C
C-c C-c, overview . 84
‘calc’ package . 16
‘calc.el’ . 87
calculations, in tables . 14, 16
calendar commands, from agenda 61
calendar integration . 55
calendar, for selecting date 48
category . 57
CDLaTeX . 70
‘cdlatex.el’ . 87
checkbox statistics . 37
checkboxes . 36
children, subtree visibility state 4
clean outline view . 85

column formula . 19
column view, for properties 43
commands, in agenda buffer 59
comment lines . 74
completion, of dictionary words 82
completion, of file names . 26
completion, of link abbreviations 82
completion, of links . 26
completion, of option keywords. 35, 76, 82
completion, of property keys 82
completion, of tags . 38, 82
completion, of TEX symbols 82
completion, of TODO keywords 34, 82
constants, in calculations . 17
‘constants.el’ . 87
constcgs, STARTUP keyword 84
constSI, STARTUP keyword 84
content, STARTUP keyword 83
contents, global visibility state 5
copying, of subtrees . 6
creating timestamps . 47
‘CUA.el’. 88
custom agenda views . 62
custom date/time format . 48
custom search strings . 29
customization . 82
customtime, STARTUP keyword 84
cutting, of subtrees . 6
cycling, of TODO states . 33
cycling, visibility . 4

D
daily agenda . 54
date format, custom . 48
date range . 46
date stamps . 46
date, reading in minibuffer 47
DEADLINE keyword . 49
deadlines . 46
debugging, of table formulas 21
demotion, of subtrees . 6
diary entries, creating from agenda 61
diary integration . 55
dictionary word completion 82
directories, for publishing . 77
dispatching agenda commands 54
display changing, in agenda 60
document structure . 4
DONE, final TODO keyword 35
drawer, for properties . 41
drawers . 10
dynamic blocks . 94

Index 100

E
editing tables . 12

editing, of table formulas . 20

elisp links . 25

emphasized text . 76

enhancing text . 75

evaluate time range . 47

even, STARTUP keyword . 84

exporting . 71

exporting agenda views 61, 64

exporting, not . 74

extended TODO keywords . 34

extension, third-party . 90

external archiving . 8

external links . 25

external links, in HTML export 72

F
FAQ . 1

feedback . 3

field formula . 19

field references . 16

file links . 25

file links, searching . 28

file name completion . 26

files for agenda . 53

files, adding to agenda list . 53

files, selecting for publishing 78

fixed width . 76

fixed-width sections . 76

folded, subtree visibility state 4

folding, sparse trees . 8

following links . 27

‘footnote.el’ . 75, 88

footnotes . 75, 76

format specifier . 18

format, of links . 24

formula debugging . 21

formula editing . 20

formula syntax, Calc . 18

formula, for individual table field. 19

formula, for table column . 19

formula, in tables . 14

G
global cycling . 5

global keybindings . 2

global TODO list . 55

global visibility states . 5

GNUS links . 25

grouping columns in tables 15

H
hand-formatted lists . 75
headline levels . 76
headline levels, for exporting 71, 72
headline navigation . 5
headline tagging . 38
headline, promotion and demotion 6
headlines . 4
hide text . 4
hidestars, STARTUP keyword 84
hiding leading stars . 85
history . 97
horizontal rules, in exported files 75
HTML export . 71
HTML, and orgtbl-mode . 93
hyperlinks . 24

I
iCalendar export . 74
images, inline in HTML . 73
in-buffer settings . 82
inactive timestamp . 46
index, of published pages . 79
Info links. 25
inheritance, of tags . 38
inlining images in HTML . 73
inserting links . 26
installation . 2
internal archiving . 7
internal links . 24
internal links, in HTML export 72
introduction . 1
italic text . 75

J
jumping, to headlines . 5

K
keybindings, global . 2
keyword options . 35

L
LaTeX fragments . 68
LaTeX fragments, export . 75
LaTeX fragments, preview . 69
LaTeX, and orgtbl-mode . 92
LaTEX fragments . 76
LaTEX interpretation . 68
level, require for tags match 40
linebreak preservation . 76
linebreak, forced . 76
link abbreviations . 28
link abbreviations, completion of 82

Index 101

link completion . 26
link format . 24
links, external . 25
links, finding next/previous 27
links, handling . 26
links, in HTML export . 72
links, internal . 24
links, publishing . 79
links, radio targets . 25
links, returning to . 27
Lisp forms, as table formulas 19
lists, hand-formatted . 75
lists, ordered . 9
lists, plain . 9
logdone, STARTUP keyword 83
logging, of progress . 50
lognoteclock-out, STARTUP keyword 83
lognotedone, STARTUP keyword 83
lognotestate, STARTUP keyword 83
logrepeat, STARTUP keyword 83

M
maintainer . 3
mark ring . 27
marking characters, tables . 22
matching, of properties . 56
matching, of tags . 56
matching, tags . 38
math symbols . 68
MH-E links. 25
minor mode for structure editing 11
minor mode for tables . 16
mode, for ‘calc’ . 18
motion commands in agenda 59
motion, between headlines . 5

N
name, of column or field . 17
named references . 17
names as TODO keywords. 34
narrow columns in tables . 14
noalign, STARTUP keyword 83
nologging, STARTUP keyword 83
nologrepeat, STARTUP keyword 83

O
occur, command . 8
odd, STARTUP keyword . 84
option keyword completion 82
options, for custom agenda views 63
options, for customization . 82
options, for export . 76
options, for publishing . 78
ordered lists . 9
org-agenda, command . 54

‘org-blog.el’ . 90
org-mode, turning on . 2
‘org-mouse.el’ . 90
org-publish-project-alist . 77
‘org-publish.el’ . 90
‘org2rem.el’ . 90
orgstruct-mode . 11
orgtbl-mode . 16, 91
outline tree . 4
outline-mode . 4
outlines . 4
overview, global visibility state 5
overview, STARTUP keyword 83

P
packages, interaction with other 87
pasting, of subtrees . 6
per file keywords . 35
plain lists . 9
plain text external links . 26
presentation, of agenda items 57
printing sparse trees . 9
priorities . 36
priorities, of agenda items . 58
progress logging . 50
projects, for publishing . 77
promotion, of subtrees . 6
properties . 41
properties, API . 45, 96
properties, column view . 43
properties, searching . 42
properties, special . 42
property syntax . 41
publishing . 77

Q
quoted HTML tags . 76

R
radio tables . 91
radio targets . 25
range references . 17
ranges, time . 46
recomputing table fields . 21
references . 16
references, named . 17
references, to fields . 16
references, to ranges . 17
region, active . 7, 14, 71, 72
regular expressions, with tags search 40
‘remember.el’ . 29, 87
remote editing, from agenda 60
remote editing, undo . 60
richer text. 75
RMAIL links . 25

Index 102

S
SCHEDULED keyword. 49
scheduling . 46
Scripts, for agenda processing 66
search option in file links . 28
search strings, custom . 29
searching for tags . 40
section-numbers . 76
setting tags . 38
SHELL links . 25
show all, command . 5
show all, global visibility state 5
show hidden text . 4
showall, STARTUP keyword 83
showstars, STARTUP keyword 84
sorting, of agenda items . 58
sparse tree, for deadlines . 49
sparse tree, for TODO . 33
sparse tree, tag based . 38
sparse trees. 8
special keywords . 82
spreadsheet capabilities . 16
statistics, for checkboxes . 37
storing links . 26
structure editing . 6
structure of document . 4
sublevels, inclusion into tags match 38
sublevels, inclusion into todo list 56
subscript . 68
subtree cycling . 4
subtree visibility states . 4
subtree, cut and paste . 6
subtree, subtree visibility state 4
subtrees, cut and paste . 6
summary . 1
superscript . 68
syntax, of formulas. 18

T
table editor, built-in . 12
table editor, ‘table.el’ . 88
table of contents . 76
‘table.el’ . 87, 88
tables . 12, 76
tables, export . 75
tables, in other modes . 91
tag completion . 82
tag searches . 40
tags . 38
tags view. 56
tags, setting . 38
targets, for links . 24
targets, radio . 25
tasks, breaking down . 36
templates, for remember . 30
TeX macros . 68
TeX macros, export . 75
TEX interpretation . 68

TEX macros . 76
TEX symbol completion . 82
TEX-like syntax for sub- and superscripts 76
thanks . 97
time format, custom . 48
time grid . 58
time info, in export . 76
time stamps . 46
time, reading in minibuffer 47
time-of-day specification . 58
time-sorted view . 56
timeline, single file . 56
timerange . 46
timestamp . 46
timestamp, inactive . 46
timestamp, with repeater interval 46
timestamps, creating . 47
TODO items . 33
TODO keyword matching . 55
TODO keyword matching, with tags search 40
todo keyword sets. 35
TODO keywords completion 82
TODO list, global . 55
TODO types . 34
TODO workflow . 34
transient-mark-mode 7, 14, 71, 72
translator function . 93
trees, sparse . 8
trees, visibility . 4
tty keybindings . 86
types as TODO keywords . 34

U
underlined text . 75
undoing remote-editing events 60
updating, table . 21
URL links . 25
USENET links . 25

V
variables, for customization 82
vectors, in table calculations 18
visibility cycling . 4
visibility cycling, drawers . 10
visible text, printing . 9
VM links . 25

W
WANDERLUST links . 25
weekly agenda . 54
‘windmove.el’ . 88
workflow states as TODO keywords 34

X
XEmacs . 2
XOXO export . 73

Key Index 103

Key Index

$
$. 60

’
’ . 70

+
+ . 60

,
, . 60

-
- . 61

.

. 60

:
: . 60

<
< . 44, 48

>
> . 44, 48, 61

^
^ . 70

_ . 70

‘
‘ . 70

A
a . 44, 60

B
b . 59

C
c . 61
C . 61
C-# . 22
C-’ . 53
C-, . 53
C-_ . 60
C-c ! . 47, 75
C-c # . 37
C-c % . 27
C-c & . 27
C-c ’ . 20
C-c * . 21
C-c + . 14
C-c , . 36
C-c - . 10, 13
C-c . 47
C-c / . 8
C-c : . 76
C-c ; . 74
C-c < . 47
C-c = . 20
C-c > . 47
C-c ? . 20
C-c [. 53
C-c] . 53
C-c ^ . 6, 13
C-c ‘ . 14
C-c { . 20, 70
C-c } . 20, 21
C-c \ . 40
C-c | . 12
C-c ~ . 88
C-c a ! . 57
C-c a # . 57
C-c a a . 54
C-c a C . 62
C-c a e . 65
C-c a L . 56
C-c a m . 40, 56
C-c a M . 40, 56
C-c a t . 33, 55
C-c a T . 55
C-c C-a . 5
C-c C-b . 5
C-c C-c 10, 12, 20, 21, 37, 38, 41, 69, 84, 88
C-c C-d . 49, 61
C-c C-e . 71
C-c C-e a . 71
C-c C-e b . 72
C-c C-e c . 74
C-c C-e h . 72
C-c C-e H . 72
C-c C-e i . 74

Key Index 104

C-c C-e I . 74
C-c C-e R . 72
C-c C-e t . 76
C-c C-e v . 9, 74
C-c C-e v a . 71
C-c C-e v b . 72
C-c C-e v h . 72
C-c C-e v H . 72
C-c C-e v R . 72
C-c C-e x . 74
C-c C-f . 5
C-c C-j . 5
C-c C-l . 26
C-c C-n . 5
C-c C-o . 27, 47
C-c C-p . 5
C-c C-q . 13, 20
C-c C-r . 5, 21
C-c C-s . 49, 61
C-c C-t . 33, 51
C-c C-u . 5
C-c C-v . 33
C-c C-w . 49
C-c C-x b . 5
C-c C-x C-a . 7
C-c C-x C-b . 37
C-c C-x C-c . 44, 61
C-c C-x C-d . 51
C-c C-x C-i . 51
C-c C-x C-k . 6
C-c C-x C-l . 69
C-c C-x C-n . 27
C-c C-x C-o . 51
C-c C-x C-p . 27
C-c C-x C-r . 52
C-c C-x C-s . 8
C-c C-x C-t . 48
C-c C-x C-u . 95
C-c C-x C-w . 6, 13
C-c C-x C-x . 51
C-c C-x C-y . 6, 13
C-c C-x M-w . 6, 13
C-c C-y . 47, 51
C-c l . 26
C-c 〈TAB〉 . 14
C-k . 60
C-S-〈left〉 . 35
C-S-〈right〉 . 35
C-TAB . 7
C-u C-c * . 21
C-u C-c . 47
C-u C-c = . 19, 20
C-u C-c C-c . 22
C-u C-c C-l . 26
C-u C-c C-x C-a . 7
C-u C-c C-x C-s . 8
C-u C-c C-x C-u . 52, 95
C-u C-u C-c * . 22

C-u C-u C-c = . 20
C-x C-s . 20
C-x C-w . 61, 64

D
d . 60
D . 60

E
e . 44

F
f . 59

G
g . 60

H
H . 61

I
i . 61
I . 61

L
l . 59
L . 59
〈left〉 . 60

M
m . 60
M . 61
M-〈down〉 . 13, 21
M-〈left〉 . 6, 13
M-〈RET〉 . 6, 10
M-〈right〉 . 6, 13
M-S-〈down〉 . 6, 10, 13, 21
M-S-〈left〉 . 6, 10, 13, 48
M-S-〈RET〉 . 6, 10, 37
M-S-〈right〉 . 6, 10, 13, 48
M-S-〈up〉 . 6, 10, 13, 21
M-〈TAB〉 . 21, 35, 38, 41, 82
M-〈up〉 . 13, 21
mouse-1 . 27, 48, 59
mouse-2 . 27, 59
mouse-3 . 27, 59

N
n . 44, 59

Key Index 105

O
o . 60
O . 61

P
p . 44, 59
P . 60

Q
q . 44, 62

R
r . 55, 60
〈RET〉 . 12, 39, 48, 59
〈right〉 . 60

S
s . 60
S . 61
S-〈down〉 10, 21, 36, 47, 48, 61
S-〈left〉 21, 33, 35, 42, 44, 47, 48, 61
S-M-〈left〉 . 44
S-M-〈RET〉 . 33
S-M-〈right〉 . 44

S-〈RET〉 . 14
S-〈right〉 21, 33, 35, 42, 44, 47, 48, 61
S-〈TAB〉 . 5, 12
S-〈up〉 . 10, 21, 36, 47, 48, 60
〈SPC〉 . 39, 59

T
t . 60
T . 60
〈TAB〉 4, 10, 12, 21, 39, 59, 70

V
v . 44

W
w . 60

X
x . 62
X . 61

Y
y . 60

	Introduction
	Summary
	Installation
	Activation
	Feedback

	Document Structure
	Outlines
	Headlines
	Visibility cycling
	Motion
	Structure editing
	Archiving
	The ARCHIVE tag
	Moving subtrees

	Sparse trees
	Plain lists
	Drawers
	The Orgstruct minor mode

	Tables
	The built-in table editor
	Narrow columns
	Column groups
	The Orgtbl minor mode
	The spreadsheet
	References
	Formula syntax for Calc
	Emacs Lisp forms as formulas
	Field formulas
	Column formulas
	Editing and Debugging formulas
	Updating the Table
	Advanced features

	Hyperlinks
	Link format
	Internal links
	Radio targets

	External links
	Handling links
	Link abbreviations
	Search options in file links
	Custom Searches
	Remember
	Setting up remember
	Remember templates
	Storing notes

	TODO items
	Basic TODO functionality
	Extended use of TODO keywords
	TODO keywords as workflow states
	TODO keywords as types
	Multiple keyword sets in one file
	Setting up keywords for individual files

	Priorities
	Breaking tasks down into subtasks
	Checkboxes

	Tags
	Tag inheritance
	Setting tags
	Tag searches

	Properties and Columns
	Property Syntax
	Special Properties
	Property searches
	Column View
	Defining Columns
	Scope of column definitions
	Column attributes

	Using Column View

	The Property API

	Timestamps
	Time stamps, deadlines and scheduling
	Creating timestamps
	The date/time prompt
	Custom time format

	Deadlines and Scheduling
	Inserting deadline/schedule
	Repeated Tasks

	Progress Logging
	Closing items
	Tracking TODO state changes
	Clocking work time

	Agenda Views
	Agenda files
	The agenda dispatcher
	The built-in agenda views
	The weekly/daily agenda
	The global TODO list
	Matching Tags and Properties
	Timeline for a single file
	Stuck projects

	Presentation and sorting
	Categories
	Time-of-Day Specifications
	Sorting of agenda items

	Commands in the agenda buffer
	Custom agenda views
	Storing searches
	Block agenda
	Setting Options for custom commands
	Exporting Agenda Views
	Extracting Agenda Information for other programs

	Embedded LaTeX
	Math symbols
	Subscripts and Superscripts
	LaTeX fragments
	Processing LaTeX fragments
	Using CDLaTeX to enter math

	Exporting
	ASCII export
	HTML export
	HTML export commands
	Quoting HTML tags
	Links
	Images
	CSS support

	XOXO export
	iCalendar export
	Text interpretation by the exporter
	Comment lines
	Text before the first headline
	Footnotes
	Enhancing text for export
	Export options

	Publishing
	Configuration
	The variable org-publish-project-alist
	Sources and destinations for files
	Selecting files
	Publishing Action
	Options for the HTML exporter
	Links between published files
	Project page index

	Sample configuration
	Example: simple publishing configuration
	Example: complex publishing configuration

	Triggering publication

	Miscellaneous
	Completion
	Customization
	Summary of in-buffer settings
	The very busy C-c C-c key
	A cleaner outline view
	Using org-mode on a tty
	Interaction with other packages
	Packages that Org-mode cooperates with
	Packages that lead to conflicts with Org-mode

	Bugs

	Extensions, Hooks and Hacking
	Third-party extensions for Org-mode
	Tables in arbitrary syntax
	Radio tables
	A LaTeX example
	Translator functions

	Dynamic blocks
	Special Agenda Views
	Using the property API

	History and Acknowledgments
	Index
	Key Index

