summaryrefslogtreecommitdiff
path: root/util/cache.cc
blob: 078b10e1aa320a86ed060961053b3126d628c700 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under the BSD-style license found in the
//  LICENSE file in the root directory of this source tree. An additional grant
//  of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

#include "rocksdb/cache.h"
#include "port/port.h"
#include "util/autovector.h"
#include "util/hash.h"
#include "util/mutexlock.h"

namespace rocksdb {

Cache::~Cache() {
}

namespace {

// LRU cache implementation

// An entry is a variable length heap-allocated structure.
// Entries are referenced by cache and/or by any external entity.
// The cache keeps all its entries in table. Some elements
// are also stored on LRU list.
//
// LRUHandle can be in these states:
// 1. Referenced externally AND in hash table.
//  In that case the entry is *not* in the LRU. (refs > 1 && in_cache == true)
// 2. Not referenced externally and in hash table. In that case the entry is
// in the LRU and can be freed. (refs == 1 && in_cache == true)
// 3. Referenced externally and not in hash table. In that case the entry is
// in not on LRU and not in table. (refs >= 1 && in_cache == false)
//
// All newly created LRUHandles are in state 1. If you call LRUCache::Release
// on entry in state 1, it will go into state 2. To move from state 1 to
// state 3, either call LRUCache::Erase or LRUCache::Insert with the same key.
// To move from state 2 to state 1, use LRUCache::Lookup.
// Before destruction, make sure that no handles are in state 1. This means
// that any successful LRUCache::Lookup/LRUCache::Insert have a matching
// RUCache::Release (to move into state 2) or LRUCache::Erase (for state 3)

struct LRUHandle {
  void* value;
  void (*deleter)(const Slice&, void* value);
  LRUHandle* next_hash;
  LRUHandle* next;
  LRUHandle* prev;
  size_t charge;      // TODO(opt): Only allow uint32_t?
  size_t key_length;
  uint32_t refs;      // a number of refs to this entry
                      // cache itself is counted as 1
  bool in_cache;      // true, if this entry is referenced by the hash table
  uint32_t hash;      // Hash of key(); used for fast sharding and comparisons
  char key_data[1];   // Beginning of key

  Slice key() const {
    // For cheaper lookups, we allow a temporary Handle object
    // to store a pointer to a key in "value".
    if (next == this) {
      return *(reinterpret_cast<Slice*>(value));
    } else {
      return Slice(key_data, key_length);
    }
  }

  void Free() {
    assert((refs == 1 && in_cache) || (refs == 0 && !in_cache));
    (*deleter)(key(), value);
    delete[] reinterpret_cast<char*>(this);
  }
};

// We provide our own simple hash table since it removes a whole bunch
// of porting hacks and is also faster than some of the built-in hash
// table implementations in some of the compiler/runtime combinations
// we have tested.  E.g., readrandom speeds up by ~5% over the g++
// 4.4.3's builtin hashtable.
class HandleTable {
 public:
  HandleTable() : length_(0), elems_(0), list_(nullptr) { Resize(); }

  template <typename T>
  void ApplyToAllCacheEntries(T func) {
    for (uint32_t i = 0; i < length_; i++) {
      LRUHandle* h = list_[i];
      while (h != nullptr) {
        auto n = h->next_hash;
        assert(h->in_cache);
        func(h);
        h = n;
      }
    }
  }

  ~HandleTable() {
    ApplyToAllCacheEntries([](LRUHandle* h) {
      if (h->refs == 1) {
        h->Free();
      }
    });
    delete[] list_;
  }

  LRUHandle* Lookup(const Slice& key, uint32_t hash) {
    return *FindPointer(key, hash);
  }

  LRUHandle* Insert(LRUHandle* h) {
    LRUHandle** ptr = FindPointer(h->key(), h->hash);
    LRUHandle* old = *ptr;
    h->next_hash = (old == nullptr ? nullptr : old->next_hash);
    *ptr = h;
    if (old == nullptr) {
      ++elems_;
      if (elems_ > length_) {
        // Since each cache entry is fairly large, we aim for a small
        // average linked list length (<= 1).
        Resize();
      }
    }
    return old;
  }

  LRUHandle* Remove(const Slice& key, uint32_t hash) {
    LRUHandle** ptr = FindPointer(key, hash);
    LRUHandle* result = *ptr;
    if (result != nullptr) {
      *ptr = result->next_hash;
      --elems_;
    }
    return result;
  }

 private:
  // The table consists of an array of buckets where each bucket is
  // a linked list of cache entries that hash into the bucket.
  uint32_t length_;
  uint32_t elems_;
  LRUHandle** list_;

  // Return a pointer to slot that points to a cache entry that
  // matches key/hash.  If there is no such cache entry, return a
  // pointer to the trailing slot in the corresponding linked list.
  LRUHandle** FindPointer(const Slice& key, uint32_t hash) {
    LRUHandle** ptr = &list_[hash & (length_ - 1)];
    while (*ptr != nullptr &&
           ((*ptr)->hash != hash || key != (*ptr)->key())) {
      ptr = &(*ptr)->next_hash;
    }
    return ptr;
  }

  void Resize() {
    uint32_t new_length = 16;
    while (new_length < elems_ * 1.5) {
      new_length *= 2;
    }
    LRUHandle** new_list = new LRUHandle*[new_length];
    memset(new_list, 0, sizeof(new_list[0]) * new_length);
    uint32_t count = 0;
    for (uint32_t i = 0; i < length_; i++) {
      LRUHandle* h = list_[i];
      while (h != nullptr) {
        LRUHandle* next = h->next_hash;
        uint32_t hash = h->hash;
        LRUHandle** ptr = &new_list[hash & (new_length - 1)];
        h->next_hash = *ptr;
        *ptr = h;
        h = next;
        count++;
      }
    }
    assert(elems_ == count);
    delete[] list_;
    list_ = new_list;
    length_ = new_length;
  }
};

// A single shard of sharded cache.
class LRUCache {
 public:
  LRUCache();
  ~LRUCache();

  // Separate from constructor so caller can easily make an array of LRUCache
  // if current usage is more than new capacity, the function will attempt to
  // free the needed space
  void SetCapacity(size_t capacity);

  // Like Cache methods, but with an extra "hash" parameter.
  Cache::Handle* Insert(const Slice& key, uint32_t hash,
                        void* value, size_t charge,
                        void (*deleter)(const Slice& key, void* value));
  Cache::Handle* Lookup(const Slice& key, uint32_t hash);
  void Release(Cache::Handle* handle);
  void Erase(const Slice& key, uint32_t hash);

  // Although in some platforms the update of size_t is atomic, to make sure
  // GetUsage() and GetPinnedUsage() work correctly under any platform, we'll
  // protect them with mutex_.

  size_t GetUsage() const {
    MutexLock l(&mutex_);
    return usage_;
  }

  size_t GetPinnedUsage() const {
    MutexLock l(&mutex_);
    assert(usage_ >= lru_usage_);
    return usage_ - lru_usage_;
  }

  void ApplyToAllCacheEntries(void (*callback)(void*, size_t),
                              bool thread_safe);

 private:
  void LRU_Remove(LRUHandle* e);
  void LRU_Append(LRUHandle* e);
  // Just reduce the reference count by 1.
  // Return true if last reference
  bool Unref(LRUHandle* e);

  // Free some space following strict LRU policy until enough space
  // to hold (usage_ + charge) is freed or the lru list is empty
  // This function is not thread safe - it needs to be executed while
  // holding the mutex_
  void EvictFromLRU(size_t charge,
                    autovector<LRUHandle*>* deleted);

  // Initialized before use.
  size_t capacity_;

  // Memory size for entries residing in the cache
  size_t usage_;

  // Memory size for entries residing only in the LRU list
  size_t lru_usage_;

  // mutex_ protects the following state.
  // We don't count mutex_ as the cache's internal state so semantically we
  // don't mind mutex_ invoking the non-const actions.
  mutable port::Mutex mutex_;

  // Dummy head of LRU list.
  // lru.prev is newest entry, lru.next is oldest entry.
  // LRU contains items which can be evicted, ie reference only by cache
  LRUHandle lru_;

  HandleTable table_;
};

LRUCache::LRUCache() : usage_(0), lru_usage_(0) {
  // Make empty circular linked list
  lru_.next = &lru_;
  lru_.prev = &lru_;
}

LRUCache::~LRUCache() {}

bool LRUCache::Unref(LRUHandle* e) {
  assert(e->refs > 0);
  e->refs--;
  return e->refs == 0;
}

// Call deleter and free

void LRUCache::ApplyToAllCacheEntries(void (*callback)(void*, size_t),
                                      bool thread_safe) {
  if (thread_safe) {
    mutex_.Lock();
  }
  table_.ApplyToAllCacheEntries([callback](LRUHandle* h) {
    callback(h->value, h->charge);
  });
  if (thread_safe) {
    mutex_.Unlock();
  }
}

void LRUCache::LRU_Remove(LRUHandle* e) {
  assert(e->next != nullptr);
  assert(e->prev != nullptr);
  e->next->prev = e->prev;
  e->prev->next = e->next;
  e->prev = e->next = nullptr;
  lru_usage_ -= e->charge;
}

void LRUCache::LRU_Append(LRUHandle* e) {
  // Make "e" newest entry by inserting just before lru_
  assert(e->next == nullptr);
  assert(e->prev == nullptr);
  e->next = &lru_;
  e->prev = lru_.prev;
  e->prev->next = e;
  e->next->prev = e;
  lru_usage_ += e->charge;
}

void LRUCache::EvictFromLRU(size_t charge,
                            autovector<LRUHandle*>* deleted) {
  while (usage_ + charge > capacity_ && lru_.next != &lru_) {
    LRUHandle* old = lru_.next;
    assert(old->in_cache);
    assert(old->refs == 1);  // LRU list contains elements which may be evicted
    LRU_Remove(old);
    table_.Remove(old->key(), old->hash);
    old->in_cache = false;
    Unref(old);
    usage_ -= old->charge;
    deleted->push_back(old);
  }
}

void LRUCache::SetCapacity(size_t capacity) {
  autovector<LRUHandle*> last_reference_list;
  {
    MutexLock l(&mutex_);
    capacity_ = capacity;
    EvictFromLRU(0, &last_reference_list);
  }
  // we free the entries here outside of mutex for
  // performance reasons
  for (auto entry : last_reference_list) {
    entry->Free();
  }
}

Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) {
  MutexLock l(&mutex_);
  LRUHandle* e = table_.Lookup(key, hash);
  if (e != nullptr) {
    assert(e->in_cache);
    if (e->refs == 1) {
      LRU_Remove(e);
    }
    e->refs++;
  }
  return reinterpret_cast<Cache::Handle*>(e);
}

void LRUCache::Release(Cache::Handle* handle) {
  LRUHandle* e = reinterpret_cast<LRUHandle*>(handle);
  bool last_reference = false;
  {
    MutexLock l(&mutex_);
    last_reference = Unref(e);
    if (last_reference) {
      usage_ -= e->charge;
    }
    if (e->refs == 1 && e->in_cache) {
      // The item is still in cache, and nobody else holds a reference to it
      if (usage_ > capacity_) {
        // the cache is full
        // The LRU list must be empty since the cache is full
        assert(lru_.next == &lru_);
        // take this opportunity and remove the item
        table_.Remove(e->key(), e->hash);
        e->in_cache = false;
        Unref(e);
        usage_ -= e->charge;
        last_reference = true;
      } else {
        // put the item on the list to be potentially freed
        LRU_Append(e);
      }
    }
  }

  // free outside of mutex
  if (last_reference) {
    e->Free();
  }
}

Cache::Handle* LRUCache::Insert(
    const Slice& key, uint32_t hash, void* value, size_t charge,
    void (*deleter)(const Slice& key, void* value)) {

  // Allocate the memory here outside of the mutex
  // If the cache is full, we'll have to release it
  // It shouldn't happen very often though.
  LRUHandle* e = reinterpret_cast<LRUHandle*>(
                    new char[sizeof(LRUHandle) - 1 + key.size()]);
  autovector<LRUHandle*> last_reference_list;

  e->value = value;
  e->deleter = deleter;
  e->charge = charge;
  e->key_length = key.size();
  e->hash = hash;
  e->refs = 2;  // One from LRUCache, one for the returned handle
  e->next = e->prev = nullptr;
  e->in_cache = true;
  memcpy(e->key_data, key.data(), key.size());

  {
    MutexLock l(&mutex_);

    // Free the space following strict LRU policy until enough space
    // is freed or the lru list is empty
    EvictFromLRU(charge, &last_reference_list);

    // insert into the cache
    // note that the cache might get larger than its capacity if not enough
    // space was freed
    LRUHandle* old = table_.Insert(e);
    usage_ += e->charge;
    if (old != nullptr) {
      old->in_cache = false;
      if (Unref(old)) {
        usage_ -= old->charge;
        // old is on LRU because it's in cache and its reference count
        // was just 1 (Unref returned 0)
        LRU_Remove(old);
        last_reference_list.push_back(old);
      }
    }
  }

  // we free the entries here outside of mutex for
  // performance reasons
  for (auto entry : last_reference_list) {
    entry->Free();
  }

  return reinterpret_cast<Cache::Handle*>(e);
}

void LRUCache::Erase(const Slice& key, uint32_t hash) {
  LRUHandle* e;
  bool last_reference = false;
  {
    MutexLock l(&mutex_);
    e = table_.Remove(key, hash);
    if (e != nullptr) {
      last_reference = Unref(e);
      if (last_reference) {
        usage_ -= e->charge;
      }
      if (last_reference && e->in_cache) {
        LRU_Remove(e);
      }
      e->in_cache = false;
    }
  }

  // mutex not held here
  // last_reference will only be true if e != nullptr
  if (last_reference) {
    e->Free();
  }
}

static int kNumShardBits = 4;          // default values, can be overridden

class ShardedLRUCache : public Cache {
 private:
  LRUCache* shards_;
  port::Mutex id_mutex_;
  port::Mutex capacity_mutex_;
  uint64_t last_id_;
  int num_shard_bits_;
  size_t capacity_;

  static inline uint32_t HashSlice(const Slice& s) {
    return Hash(s.data(), s.size(), 0);
  }

  uint32_t Shard(uint32_t hash) {
    // Note, hash >> 32 yields hash in gcc, not the zero we expect!
    return (num_shard_bits_ > 0) ? (hash >> (32 - num_shard_bits_)) : 0;
  }

 public:
  ShardedLRUCache(size_t capacity, int num_shard_bits)
      : last_id_(0), num_shard_bits_(num_shard_bits), capacity_(capacity) {
    int num_shards = 1 << num_shard_bits_;
    shards_ = new LRUCache[num_shards];
    const size_t per_shard = (capacity + (num_shards - 1)) / num_shards;
    for (int s = 0; s < num_shards; s++) {
      shards_[s].SetCapacity(per_shard);
    }
  }
  virtual ~ShardedLRUCache() {
    delete[] shards_;
  }
  virtual void SetCapacity(size_t capacity) override {
    int num_shards = 1 << num_shard_bits_;
    const size_t per_shard = (capacity + (num_shards - 1)) / num_shards;
    MutexLock l(&capacity_mutex_);
    for (int s = 0; s < num_shards; s++) {
      shards_[s].SetCapacity(per_shard);
    }
    capacity_ = capacity;
  }
  virtual Handle* Insert(const Slice& key, void* value, size_t charge,
                         void (*deleter)(const Slice& key,
                                         void* value)) override {
    const uint32_t hash = HashSlice(key);
    return shards_[Shard(hash)].Insert(key, hash, value, charge, deleter);
  }
  virtual Handle* Lookup(const Slice& key) override {
    const uint32_t hash = HashSlice(key);
    return shards_[Shard(hash)].Lookup(key, hash);
  }
  virtual void Release(Handle* handle) override {
    LRUHandle* h = reinterpret_cast<LRUHandle*>(handle);
    shards_[Shard(h->hash)].Release(handle);
  }
  virtual void Erase(const Slice& key) override {
    const uint32_t hash = HashSlice(key);
    shards_[Shard(hash)].Erase(key, hash);
  }
  virtual void* Value(Handle* handle) override {
    return reinterpret_cast<LRUHandle*>(handle)->value;
  }
  virtual uint64_t NewId() override {
    MutexLock l(&id_mutex_);
    return ++(last_id_);
  }
  virtual size_t GetCapacity() const override { return capacity_; }

  virtual size_t GetUsage() const override {
    // We will not lock the cache when getting the usage from shards.
    int num_shards = 1 << num_shard_bits_;
    size_t usage = 0;
    for (int s = 0; s < num_shards; s++) {
      usage += shards_[s].GetUsage();
    }
    return usage;
  }

  virtual size_t GetUsage(Handle* handle) const override {
    return reinterpret_cast<LRUHandle*>(handle)->charge;
  }

  virtual size_t GetPinnedUsage() const override {
    // We will not lock the cache when getting the usage from shards.
    int num_shards = 1 << num_shard_bits_;
    size_t usage = 0;
    for (int s = 0; s < num_shards; s++) {
      usage += shards_[s].GetPinnedUsage();
    }
    return usage;
  }

  virtual void DisownData() override { shards_ = nullptr; }

  virtual void ApplyToAllCacheEntries(void (*callback)(void*, size_t),
                                      bool thread_safe) override {
    int num_shards = 1 << num_shard_bits_;
    for (int s = 0; s < num_shards; s++) {
      shards_[s].ApplyToAllCacheEntries(callback, thread_safe);
    }
  }
};

}  // end anonymous namespace

shared_ptr<Cache> NewLRUCache(size_t capacity) {
  return NewLRUCache(capacity, kNumShardBits);
}

shared_ptr<Cache> NewLRUCache(size_t capacity, int num_shard_bits) {
  if (num_shard_bits >= 20) {
    return nullptr;  // the cache cannot be sharded into too many fine pieces
  }
  return std::make_shared<ShardedLRUCache>(capacity, num_shard_bits);
}

}  // namespace rocksdb