summaryrefslogtreecommitdiff
path: root/util/file_reader_writer.cc
blob: e68ff4676a2a09469bfe4182ae0e61ab0a5a56d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under the BSD-style license found in the
//  LICENSE file in the root directory of this source tree. An additional grant
//  of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "util/file_reader_writer.h"

#include <algorithm>
#include <mutex>

#include "port/port.h"
#include "util/histogram.h"
#include "util/iostats_context_imp.h"
#include "util/random.h"
#include "util/rate_limiter.h"
#include "util/sync_point.h"

namespace rocksdb {

Status SequentialFileReader::Read(size_t n, Slice* result, char* scratch) {
  Status s;
  if (use_direct_io()) {
    size_t offset = offset_.fetch_add(n);
    size_t alignment = file_->GetRequiredBufferAlignment();
    size_t aligned_offset = TruncateToPageBoundary(alignment, offset);
    size_t offset_advance = offset - aligned_offset;
    size_t size = Roundup(offset + n, alignment) - aligned_offset;
    size_t r = 0;
    AlignedBuffer buf;
    buf.Alignment(alignment);
    buf.AllocateNewBuffer(size);
    Slice tmp;
    s = file_->PositionedRead(aligned_offset, size, &tmp, buf.BufferStart());
    if (s.ok() && offset_advance < tmp.size()) {
      buf.Size(tmp.size());
      r = buf.Read(scratch, offset_advance,
                   std::min(tmp.size() - offset_advance, n));
    }
    *result = Slice(scratch, r);
  } else {
    s = file_->Read(n, result, scratch);
  }
  IOSTATS_ADD(bytes_read, result->size());
  return s;
}

Status SequentialFileReader::DirectRead(size_t n, Slice* result,
                                        char* scratch) {
  size_t offset = offset_.fetch_add(n);
  size_t alignment = file_->GetRequiredBufferAlignment();
  size_t aligned_offset = TruncateToPageBoundary(alignment, offset);
  size_t offset_advance = offset - aligned_offset;
  size_t size = Roundup(offset + n, alignment) - aligned_offset;
  AlignedBuffer buf;
  buf.Alignment(alignment);
  buf.AllocateNewBuffer(size);
  Slice tmp;
  Status s =
      file_->PositionedRead(aligned_offset, size, &tmp, buf.BufferStart());
  if (s.ok()) {
    buf.Size(tmp.size());
    size_t r = buf.Read(scratch, offset_advance,
                        tmp.size() <= offset_advance
                            ? 0
                            : std::min(tmp.size() - offset_advance, n));
    *result = Slice(scratch, r);
  }
  return s;
}

Status SequentialFileReader::Skip(uint64_t n) {
  if (use_direct_io()) {
    offset_ += n;
    return Status::OK();
  } else {
    return file_->Skip(n);
  }
}

Status RandomAccessFileReader::Read(uint64_t offset, size_t n, Slice* result,
                                    char* scratch) const {
  Status s;
  uint64_t elapsed = 0;
  {
    StopWatch sw(env_, stats_, hist_type_,
                 (stats_ != nullptr) ? &elapsed : nullptr);
    IOSTATS_TIMER_GUARD(read_nanos);
    if (use_direct_io()) {
      size_t alignment = file_->GetRequiredBufferAlignment();
      size_t aligned_offset = TruncateToPageBoundary(alignment, offset);
      size_t offset_advance = offset - aligned_offset;
      size_t size = Roundup(offset + n, alignment) - aligned_offset;
      size_t r = 0;
      AlignedBuffer buf;
      buf.Alignment(alignment);
      buf.AllocateNewBuffer(size);
      Slice tmp;
      s = file_->Read(aligned_offset, size, &tmp, buf.BufferStart());
      if (s.ok() && offset_advance < tmp.size()) {
        buf.Size(tmp.size());
        r = buf.Read(scratch, offset_advance,
                            std::min(tmp.size() - offset_advance, n));
      }
      *result = Slice(scratch, r);
    } else {
      s = file_->Read(offset, n, result, scratch);
    }
    IOSTATS_ADD_IF_POSITIVE(bytes_read, result->size());
  }
  if (stats_ != nullptr && file_read_hist_ != nullptr) {
    file_read_hist_->Add(elapsed);
  }
  return s;
}

Status RandomAccessFileReader::DirectRead(uint64_t offset, size_t n,
                                          Slice* result, char* scratch) const {
  size_t alignment = file_->GetRequiredBufferAlignment();
  size_t aligned_offset = TruncateToPageBoundary(alignment, offset);
  size_t offset_advance = offset - aligned_offset;
  size_t size = Roundup(offset + n, alignment) - aligned_offset;
  AlignedBuffer buf;
  buf.Alignment(alignment);
  buf.AllocateNewBuffer(size);
  Slice tmp;
  Status s = file_->Read(aligned_offset, size, &tmp, buf.BufferStart());
  if (s.ok()) {
    buf.Size(tmp.size());
    size_t r = buf.Read(scratch, offset_advance,
                        tmp.size() <= offset_advance
                            ? 0
                            : std::min(tmp.size() - offset_advance, n));
    *result = Slice(scratch, r);
  }
  return s;
}

Status WritableFileWriter::Append(const Slice& data) {
  const char* src = data.data();
  size_t left = data.size();
  Status s;
  pending_sync_ = true;

  TEST_KILL_RANDOM("WritableFileWriter::Append:0",
                   rocksdb_kill_odds * REDUCE_ODDS2);

  {
    IOSTATS_TIMER_GUARD(prepare_write_nanos);
    TEST_SYNC_POINT("WritableFileWriter::Append:BeforePrepareWrite");
    writable_file_->PrepareWrite(static_cast<size_t>(GetFileSize()), left);
  }

  // Flush only when buffered I/O
  if (!direct_io_ && (buf_.Capacity() - buf_.CurrentSize()) < left) {
    if (buf_.CurrentSize() > 0) {
      s = Flush();
      if (!s.ok()) {
        return s;
      }
    }

    if (buf_.Capacity() < max_buffer_size_) {
      size_t desiredCapacity = buf_.Capacity() * 2;
      desiredCapacity = std::min(desiredCapacity, max_buffer_size_);
      buf_.AllocateNewBuffer(desiredCapacity);
    }
    assert(buf_.CurrentSize() == 0);
  }

  // We never write directly to disk with direct I/O on.
  // or we simply use it for its original purpose to accumulate many small
  // chunks
  if (direct_io_ || (buf_.Capacity() >= left)) {
    while (left > 0) {
      size_t appended = buf_.Append(src, left);
      left -= appended;
      src += appended;

      if (left > 0) {
        s = Flush();
        if (!s.ok()) {
          break;
        }

        // We double the buffer here because
        // Flush calls do not keep up with the incoming bytes
        // This is the only place when buffer is changed with direct I/O
        if (buf_.Capacity() < max_buffer_size_) {
          size_t desiredCapacity = buf_.Capacity() * 2;
          desiredCapacity = std::min(desiredCapacity, max_buffer_size_);
          buf_.AllocateNewBuffer(desiredCapacity);
        }
      }
    }
  } else {
    // Writing directly to file bypassing the buffer
    assert(buf_.CurrentSize() == 0);
    s = WriteBuffered(src, left);
  }

  TEST_KILL_RANDOM("WritableFileWriter::Append:1", rocksdb_kill_odds);
  if (s.ok()) {
    filesize_ += data.size();
  }
  return s;
}

Status WritableFileWriter::Close() {

  // Do not quit immediately on failure the file MUST be closed
  Status s;

  // Possible to close it twice now as we MUST close
  // in __dtor, simply flushing is not enough
  // Windows when pre-allocating does not fill with zeros
  // also with unbuffered access we also set the end of data.
  if (!writable_file_) {
    return s;
  }

  s = Flush();  // flush cache to OS

  // In direct I/O mode we write whole pages so
  // we need to let the file know where data ends.
  Status interim = writable_file_->Truncate(filesize_);
  if (!interim.ok() && s.ok()) {
    s = interim;
  }

  TEST_KILL_RANDOM("WritableFileWriter::Close:0", rocksdb_kill_odds);
  interim = writable_file_->Close();
  if (!interim.ok() && s.ok()) {
    s = interim;
  }

  writable_file_.reset();
  TEST_KILL_RANDOM("WritableFileWriter::Close:1", rocksdb_kill_odds);

  return s;
}

// write out the cached data to the OS cache or storage if direct I/O
// enabled
Status WritableFileWriter::Flush() {
  Status s;
  TEST_KILL_RANDOM("WritableFileWriter::Flush:0",
                   rocksdb_kill_odds * REDUCE_ODDS2);

  if (buf_.CurrentSize() > 0) {
    if (direct_io_) {
      s = WriteDirect();
    } else {
      s = WriteBuffered(buf_.BufferStart(), buf_.CurrentSize());
    }
    if (!s.ok()) {
      return s;
    }
  }

  s = writable_file_->Flush();

  if (!s.ok()) {
    return s;
  }

  // sync OS cache to disk for every bytes_per_sync_
  // TODO: give log file and sst file different options (log
  // files could be potentially cached in OS for their whole
  // life time, thus we might not want to flush at all).

  // We try to avoid sync to the last 1MB of data. For two reasons:
  // (1) avoid rewrite the same page that is modified later.
  // (2) for older version of OS, write can block while writing out
  //     the page.
  // Xfs does neighbor page flushing outside of the specified ranges. We
  // need to make sure sync range is far from the write offset.
  if (!direct_io_ && bytes_per_sync_) {
    const uint64_t kBytesNotSyncRange = 1024 * 1024;  // recent 1MB is not synced.
    const uint64_t kBytesAlignWhenSync = 4 * 1024;    // Align 4KB.
    if (filesize_ > kBytesNotSyncRange) {
      uint64_t offset_sync_to = filesize_ - kBytesNotSyncRange;
      offset_sync_to -= offset_sync_to % kBytesAlignWhenSync;
      assert(offset_sync_to >= last_sync_size_);
      if (offset_sync_to > 0 &&
          offset_sync_to - last_sync_size_ >= bytes_per_sync_) {
        s = RangeSync(last_sync_size_, offset_sync_to - last_sync_size_);
        last_sync_size_ = offset_sync_to;
      }
    }
  }

  return s;
}

Status WritableFileWriter::Sync(bool use_fsync) {
  Status s = Flush();
  if (!s.ok()) {
    return s;
  }
  TEST_KILL_RANDOM("WritableFileWriter::Sync:0", rocksdb_kill_odds);
  if (!direct_io_ && pending_sync_) {
    s = SyncInternal(use_fsync);
    if (!s.ok()) {
      return s;
    }
  }
  TEST_KILL_RANDOM("WritableFileWriter::Sync:1", rocksdb_kill_odds);
  pending_sync_ = false;
  return Status::OK();
}

Status WritableFileWriter::SyncWithoutFlush(bool use_fsync) {
  if (!writable_file_->IsSyncThreadSafe()) {
    return Status::NotSupported(
      "Can't WritableFileWriter::SyncWithoutFlush() because "
      "WritableFile::IsSyncThreadSafe() is false");
  }
  TEST_SYNC_POINT("WritableFileWriter::SyncWithoutFlush:1");
  Status s = SyncInternal(use_fsync);
  TEST_SYNC_POINT("WritableFileWriter::SyncWithoutFlush:2");
  return s;
}

Status WritableFileWriter::SyncInternal(bool use_fsync) {
  Status s;
  IOSTATS_TIMER_GUARD(fsync_nanos);
  TEST_SYNC_POINT("WritableFileWriter::SyncInternal:0");
  if (use_fsync) {
    s = writable_file_->Fsync();
  } else {
    s = writable_file_->Sync();
  }
  return s;
}

Status WritableFileWriter::RangeSync(uint64_t offset, uint64_t nbytes) {
  IOSTATS_TIMER_GUARD(range_sync_nanos);
  TEST_SYNC_POINT("WritableFileWriter::RangeSync:0");
  return writable_file_->RangeSync(offset, nbytes);
}

size_t WritableFileWriter::RequestToken(size_t bytes, bool align) {
  Env::IOPriority io_priority;
  if (rate_limiter_ && (io_priority = writable_file_->GetIOPriority()) <
      Env::IO_TOTAL) {
    bytes = std::min(
      bytes, static_cast<size_t>(rate_limiter_->GetSingleBurstBytes()));

    if (align) {
      // Here we may actually require more than burst and block
      // but we can not write less than one page at a time on direct I/O
      // thus we may want not to use ratelimiter
      size_t alignment = buf_.Alignment();
      bytes = std::max(alignment, TruncateToPageBoundary(alignment, bytes));
    }
    rate_limiter_->Request(bytes, io_priority);
  }
  return bytes;
}

// This method writes to disk the specified data and makes use of the rate
// limiter if available
Status WritableFileWriter::WriteBuffered(const char* data, size_t size) {
  Status s;
  assert(!direct_io_);
  const char* src = data;
  size_t left = size;

  while (left > 0) {
    size_t allowed = RequestToken(left, false);

    {
      IOSTATS_TIMER_GUARD(write_nanos);
      TEST_SYNC_POINT("WritableFileWriter::Flush:BeforeAppend");
      s = writable_file_->Append(Slice(src, allowed));
      if (!s.ok()) {
        return s;
      }
    }

    IOSTATS_ADD(bytes_written, allowed);
    TEST_KILL_RANDOM("WritableFileWriter::WriteBuffered:0", rocksdb_kill_odds);

    left -= allowed;
    src += allowed;
  }
  buf_.Size(0);
  return s;
}


// This flushes the accumulated data in the buffer. We pad data with zeros if
// necessary to the whole page.
// However, during automatic flushes padding would not be necessary.
// We always use RateLimiter if available. We move (Refit) any buffer bytes
// that are left over the
// whole number of pages to be written again on the next flush because we can
// only write on aligned
// offsets.
Status WritableFileWriter::WriteDirect() {
  Status s;

  assert(direct_io_);
  const size_t alignment = buf_.Alignment();
  assert((next_write_offset_ % alignment) == 0);

  // Calculate whole page final file advance if all writes succeed
  size_t file_advance =
    TruncateToPageBoundary(alignment, buf_.CurrentSize());

  // Calculate the leftover tail, we write it here padded with zeros BUT we
  // will write
  // it again in the future either on Close() OR when the current whole page
  // fills out
  size_t leftover_tail = buf_.CurrentSize() - file_advance;

  // Round up and pad
  buf_.PadToAlignmentWith(0);

  const char* src = buf_.BufferStart();
  uint64_t write_offset = next_write_offset_;
  size_t left = buf_.CurrentSize();

  while (left > 0) {
    // Check how much is allowed
    size_t size = RequestToken(left, true);

    {
      IOSTATS_TIMER_GUARD(write_nanos);
      TEST_SYNC_POINT("WritableFileWriter::Flush:BeforeAppend");
      // direct writes must be positional
      s = writable_file_->PositionedAppend(Slice(src, size), write_offset);
      if (!s.ok()) {
        buf_.Size(file_advance + leftover_tail);
        return s;
      }
    }

    IOSTATS_ADD(bytes_written, size);
    left -= size;
    src += size;
    write_offset += size;
    assert((next_write_offset_ % alignment) == 0);
  }

  if (s.ok()) {
    // Move the tail to the beginning of the buffer
    // This never happens during normal Append but rather during
    // explicit call to Flush()/Sync() or Close()
    buf_.RefitTail(file_advance, leftover_tail);
    // This is where we start writing next time which may or not be
    // the actual file size on disk. They match if the buffer size
    // is a multiple of whole pages otherwise filesize_ is leftover_tail
    // behind
    next_write_offset_ += file_advance;
  }
  return s;
}


namespace {
class ReadaheadRandomAccessFile : public RandomAccessFile {
 public:
  ReadaheadRandomAccessFile(std::unique_ptr<RandomAccessFile>&& file,
                            size_t readahead_size)
      : file_(std::move(file)),
        readahead_size_(readahead_size),
        forward_calls_(file_->ShouldForwardRawRequest()),
        buffer_(),
        buffer_offset_(0),
        buffer_len_(0) {
    if (!forward_calls_) {
      buffer_.reset(new char[readahead_size_]);
    } else if (readahead_size_ > 0) {
      file_->EnableReadAhead();
    }
  }

 ReadaheadRandomAccessFile(const ReadaheadRandomAccessFile&) = delete;

 ReadaheadRandomAccessFile& operator=(const ReadaheadRandomAccessFile&) = delete;

  virtual Status Read(uint64_t offset, size_t n, Slice* result,
                      char* scratch) const override {
    if (n >= readahead_size_) {
      return file_->Read(offset, n, result, scratch);
    }

    // On Windows in unbuffered mode this will lead to double buffering
    // and double locking so we avoid that.
    // In normal mode Windows caches so much data from disk that we do
    // not need readahead.
    if (forward_calls_) {
      return file_->Read(offset, n, result, scratch);
    }

    std::unique_lock<std::mutex> lk(lock_);

    size_t copied = 0;
    // if offset between [buffer_offset_, buffer_offset_ + buffer_len>
    if (offset >= buffer_offset_ && offset < buffer_len_ + buffer_offset_) {
      uint64_t offset_in_buffer = offset - buffer_offset_;
      copied = std::min(buffer_len_ - static_cast<size_t>(offset_in_buffer), n);
      memcpy(scratch, buffer_.get() + offset_in_buffer, copied);
      if (copied == n) {
        // fully cached
        *result = Slice(scratch, n);
        return Status::OK();
      }
    }
    Slice readahead_result;
    Status s = file_->Read(offset + copied, readahead_size_, &readahead_result,
      buffer_.get());
    if (!s.ok()) {
      return s;
    }

    auto left_to_copy = std::min(readahead_result.size(), n - copied);
    memcpy(scratch + copied, readahead_result.data(), left_to_copy);
    *result = Slice(scratch, copied + left_to_copy);

    if (readahead_result.data() == buffer_.get()) {
      buffer_offset_ = offset + copied;
      buffer_len_ = readahead_result.size();
    } else {
      buffer_len_ = 0;
    }

    return Status::OK();
  }

  virtual size_t GetUniqueId(char* id, size_t max_size) const override {
    return file_->GetUniqueId(id, max_size);
  }

  virtual void Hint(AccessPattern pattern) override { file_->Hint(pattern); }

  virtual Status InvalidateCache(size_t offset, size_t length) override {
    return file_->InvalidateCache(offset, length);
  }

  virtual bool use_direct_io() const override {
    return file_->use_direct_io();
  }

 private:
  std::unique_ptr<RandomAccessFile> file_;
  size_t               readahead_size_;
  const bool           forward_calls_;

  mutable std::mutex   lock_;
  mutable std::unique_ptr<char[]> buffer_;
  mutable uint64_t     buffer_offset_;
  mutable size_t       buffer_len_;
};
}  // namespace

std::unique_ptr<RandomAccessFile> NewReadaheadRandomAccessFile(
    std::unique_ptr<RandomAccessFile>&& file, size_t readahead_size) {
  std::unique_ptr<RandomAccessFile> result(
    new ReadaheadRandomAccessFile(std::move(file), readahead_size));
  return result;
}

Status NewWritableFile(Env* env, const std::string& fname,
                       unique_ptr<WritableFile>* result,
                       const EnvOptions& options) {
  Status s = env->NewWritableFile(fname, result, options);
  TEST_KILL_RANDOM("NewWritableFile:0", rocksdb_kill_odds * REDUCE_ODDS2);
  return s;
}

}  // namespace rocksdb