// Decoding metadata from a single crate's metadata use crate::creader::CrateMetadataRef; use crate::rmeta::table::{FixedSizeEncoding, Table}; use crate::rmeta::*; use rustc_ast::ast::{self, Ident}; use rustc_attr as attr; use rustc_data_structures::captures::Captures; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::svh::Svh; use rustc_data_structures::sync::{AtomicCell, Lock, LockGuard, Lrc, Once}; use rustc_expand::base::{SyntaxExtension, SyntaxExtensionKind}; use rustc_expand::proc_macro::{AttrProcMacro, BangProcMacro, ProcMacroDerive}; use rustc_hir as hir; use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res}; use rustc_hir::def_id::{CrateNum, DefId, DefIndex, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE}; use rustc_hir::definitions::DefPathTable; use rustc_hir::definitions::{DefKey, DefPath, DefPathData, DefPathHash}; use rustc_hir::lang_items; use rustc_index::vec::{Idx, IndexVec}; use rustc_middle::dep_graph::{self, DepNode, DepNodeExt, DepNodeIndex}; use rustc_middle::hir::exports::Export; use rustc_middle::middle::cstore::{CrateSource, ExternCrate}; use rustc_middle::middle::cstore::{ForeignModule, LinkagePreference, NativeLibrary}; use rustc_middle::middle::exported_symbols::{ExportedSymbol, SymbolExportLevel}; use rustc_middle::mir::interpret::{AllocDecodingSession, AllocDecodingState}; use rustc_middle::mir::{self, interpret, BodyAndCache, Promoted}; use rustc_middle::ty::codec::TyDecoder; use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_middle::util::common::record_time; use rustc_serialize::{opaque, Decodable, Decoder, SpecializedDecoder}; use rustc_session::Session; use rustc_span::source_map::{respan, Spanned}; use rustc_span::symbol::{sym, Symbol}; use rustc_span::{self, hygiene::MacroKind, BytePos, Pos, Span, DUMMY_SP}; use log::debug; use proc_macro::bridge::client::ProcMacro; use std::io; use std::mem; use std::num::NonZeroUsize; use std::path::Path; pub use cstore_impl::{provide, provide_extern}; mod cstore_impl; crate struct MetadataBlob(MetadataRef); // A map from external crate numbers (as decoded from some crate file) to // local crate numbers (as generated during this session). Each external // crate may refer to types in other external crates, and each has their // own crate numbers. crate type CrateNumMap = IndexVec; crate struct CrateMetadata { /// The primary crate data - binary metadata blob. blob: MetadataBlob, // --- Some data pre-decoded from the metadata blob, usually for performance --- /// Properties of the whole crate. /// NOTE(eddyb) we pass `'static` to a `'tcx` parameter because this /// lifetime is only used behind `Lazy`, and therefore acts like an /// universal (`for<'tcx>`), that is paired up with whichever `TyCtxt` /// is being used to decode those values. root: CrateRoot<'static>, /// For each definition in this crate, we encode a key. When the /// crate is loaded, we read all the keys and put them in this /// hashmap, which gives the reverse mapping. This allows us to /// quickly retrace a `DefPath`, which is needed for incremental /// compilation support. def_path_table: DefPathTable, /// Trait impl data. /// FIXME: Used only from queries and can use query cache, /// so pre-decoding can probably be avoided. trait_impls: FxHashMap<(u32, DefIndex), Lazy<[DefIndex]>>, /// Proc macro descriptions for this crate, if it's a proc macro crate. raw_proc_macros: Option<&'static [ProcMacro]>, /// Source maps for code from the crate. source_map_import_info: Once>, /// Used for decoding interpret::AllocIds in a cached & thread-safe manner. alloc_decoding_state: AllocDecodingState, /// The `DepNodeIndex` of the `DepNode` representing this upstream crate. /// It is initialized on the first access in `get_crate_dep_node_index()`. /// Do not access the value directly, as it might not have been initialized yet. /// The field must always be initialized to `DepNodeIndex::INVALID`. dep_node_index: AtomicCell, // --- Other significant crate properties --- /// ID of this crate, from the current compilation session's point of view. cnum: CrateNum, /// Maps crate IDs as they are were seen from this crate's compilation sessions into /// IDs as they are seen from the current compilation session. cnum_map: CrateNumMap, /// Same ID set as `cnum_map` plus maybe some injected crates like panic runtime. dependencies: Lock>, /// How to link (or not link) this crate to the currently compiled crate. dep_kind: Lock, /// Filesystem location of this crate. source: CrateSource, /// Whether or not this crate should be consider a private dependency /// for purposes of the 'exported_private_dependencies' lint private_dep: bool, /// The hash for the host proc macro. Used to support `-Z dual-proc-macro`. host_hash: Option, // --- Data used only for improving diagnostics --- /// Information about the `extern crate` item or path that caused this crate to be loaded. /// If this is `None`, then the crate was injected (e.g., by the allocator). extern_crate: Lock>, } /// Holds information about a rustc_span::SourceFile imported from another crate. /// See `imported_source_files()` for more information. struct ImportedSourceFile { /// This SourceFile's byte-offset within the source_map of its original crate original_start_pos: rustc_span::BytePos, /// The end of this SourceFile within the source_map of its original crate original_end_pos: rustc_span::BytePos, /// The imported SourceFile's representation within the local source_map translated_source_file: Lrc, } pub(super) struct DecodeContext<'a, 'tcx> { opaque: opaque::Decoder<'a>, cdata: Option>, sess: Option<&'tcx Session>, tcx: Option>, // Cache the last used source_file for translating spans as an optimization. last_source_file_index: usize, lazy_state: LazyState, // Used for decoding interpret::AllocIds in a cached & thread-safe manner. alloc_decoding_session: Option>, } /// Abstract over the various ways one can create metadata decoders. pub(super) trait Metadata<'a, 'tcx>: Copy { fn raw_bytes(self) -> &'a [u8]; fn cdata(self) -> Option> { None } fn sess(self) -> Option<&'tcx Session> { None } fn tcx(self) -> Option> { None } fn decoder(self, pos: usize) -> DecodeContext<'a, 'tcx> { let tcx = self.tcx(); DecodeContext { opaque: opaque::Decoder::new(self.raw_bytes(), pos), cdata: self.cdata(), sess: self.sess().or(tcx.map(|tcx| tcx.sess)), tcx, last_source_file_index: 0, lazy_state: LazyState::NoNode, alloc_decoding_session: self .cdata() .map(|cdata| cdata.cdata.alloc_decoding_state.new_decoding_session()), } } } impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a MetadataBlob { fn raw_bytes(self) -> &'a [u8] { &self.0 } } impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a MetadataBlob, &'tcx Session) { fn raw_bytes(self) -> &'a [u8] { let (blob, _) = self; &blob.0 } fn sess(self) -> Option<&'tcx Session> { let (_, sess) = self; Some(sess) } } impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a CrateMetadataRef<'a> { fn raw_bytes(self) -> &'a [u8] { self.blob.raw_bytes() } fn cdata(self) -> Option> { Some(*self) } } impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a CrateMetadataRef<'a>, &'tcx Session) { fn raw_bytes(self) -> &'a [u8] { self.0.raw_bytes() } fn cdata(self) -> Option> { Some(*self.0) } fn sess(self) -> Option<&'tcx Session> { Some(&self.1) } } impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a CrateMetadataRef<'a>, TyCtxt<'tcx>) { fn raw_bytes(self) -> &'a [u8] { self.0.raw_bytes() } fn cdata(self) -> Option> { Some(*self.0) } fn tcx(self) -> Option> { Some(self.1) } } impl<'a, 'tcx, T: Decodable> Lazy { fn decode>(self, metadata: M) -> T { let mut dcx = metadata.decoder(self.position.get()); dcx.lazy_state = LazyState::NodeStart(self.position); T::decode(&mut dcx).unwrap() } } impl<'a: 'x, 'tcx: 'x, 'x, T: Decodable> Lazy<[T]> { fn decode>( self, metadata: M, ) -> impl ExactSizeIterator + Captures<'a> + Captures<'tcx> + 'x { let mut dcx = metadata.decoder(self.position.get()); dcx.lazy_state = LazyState::NodeStart(self.position); (0..self.meta).map(move |_| T::decode(&mut dcx).unwrap()) } } impl<'a, 'tcx> DecodeContext<'a, 'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx.expect("missing TyCtxt in DecodeContext") } fn cdata(&self) -> CrateMetadataRef<'a> { self.cdata.expect("missing CrateMetadata in DecodeContext") } fn read_lazy_with_meta( &mut self, meta: T::Meta, ) -> Result, ::Error> { let min_size = T::min_size(meta); let distance = self.read_usize()?; let position = match self.lazy_state { LazyState::NoNode => bug!("read_lazy_with_meta: outside of a metadata node"), LazyState::NodeStart(start) => { let start = start.get(); assert!(distance + min_size <= start); start - distance - min_size } LazyState::Previous(last_min_end) => last_min_end.get() + distance, }; self.lazy_state = LazyState::Previous(NonZeroUsize::new(position + min_size).unwrap()); Ok(Lazy::from_position_and_meta(NonZeroUsize::new(position).unwrap(), meta)) } } impl<'a, 'tcx> TyDecoder<'tcx> for DecodeContext<'a, 'tcx> { #[inline] fn tcx(&self) -> TyCtxt<'tcx> { self.tcx.expect("missing TyCtxt in DecodeContext") } #[inline] fn peek_byte(&self) -> u8 { self.opaque.data[self.opaque.position()] } #[inline] fn position(&self) -> usize { self.opaque.position() } fn cached_ty_for_shorthand( &mut self, shorthand: usize, or_insert_with: F, ) -> Result, Self::Error> where F: FnOnce(&mut Self) -> Result, Self::Error>, { let tcx = self.tcx(); let key = ty::CReaderCacheKey { cnum: self.cdata().cnum, pos: shorthand }; if let Some(&ty) = tcx.rcache.borrow().get(&key) { return Ok(ty); } let ty = or_insert_with(self)?; tcx.rcache.borrow_mut().insert(key, ty); Ok(ty) } fn with_position(&mut self, pos: usize, f: F) -> R where F: FnOnce(&mut Self) -> R, { let new_opaque = opaque::Decoder::new(self.opaque.data, pos); let old_opaque = mem::replace(&mut self.opaque, new_opaque); let old_state = mem::replace(&mut self.lazy_state, LazyState::NoNode); let r = f(self); self.opaque = old_opaque; self.lazy_state = old_state; r } fn map_encoded_cnum_to_current(&self, cnum: CrateNum) -> CrateNum { if cnum == LOCAL_CRATE { self.cdata().cnum } else { self.cdata().cnum_map[cnum] } } } impl<'a, 'tcx, T> SpecializedDecoder> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result, Self::Error> { self.read_lazy_with_meta(()) } } impl<'a, 'tcx, T> SpecializedDecoder> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result, Self::Error> { let len = self.read_usize()?; if len == 0 { Ok(Lazy::empty()) } else { self.read_lazy_with_meta(len) } } } impl<'a, 'tcx, I: Idx, T> SpecializedDecoder>> for DecodeContext<'a, 'tcx> where Option: FixedSizeEncoding, { fn specialized_decode(&mut self) -> Result>, Self::Error> { let len = self.read_usize()?; self.read_lazy_with_meta(len) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { #[inline] fn specialized_decode(&mut self) -> Result { let krate = CrateNum::decode(self)?; let index = DefIndex::decode(self)?; Ok(DefId { krate, index }) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { #[inline] fn specialized_decode(&mut self) -> Result { Ok(DefIndex::from_u32(self.read_u32()?)) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { #[inline] fn specialized_decode(&mut self) -> Result { Ok(DefId::decode(self)?.expect_local()) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result { if let Some(alloc_decoding_session) = self.alloc_decoding_session { alloc_decoding_session.decode_alloc_id(self) } else { bug!("Attempting to decode interpret::AllocId without CrateMetadata") } } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result { let tag = u8::decode(self)?; if tag == TAG_INVALID_SPAN { return Ok(DUMMY_SP); } debug_assert!(tag == TAG_VALID_SPAN_LOCAL || tag == TAG_VALID_SPAN_FOREIGN); let lo = BytePos::decode(self)?; let len = BytePos::decode(self)?; let hi = lo + len; let sess = if let Some(sess) = self.sess { sess } else { bug!("Cannot decode Span without Session.") }; // There are two possibilities here: // 1. This is a 'local span', which is located inside a `SourceFile` // that came from this crate. In this case, we use the source map data // encoded in this crate. This branch should be taken nearly all of the time. // 2. This is a 'foreign span', which is located inside a `SourceFile` // that came from a *different* crate (some crate upstream of the one // whose metadata we're looking at). For example, consider this dependency graph: // // A -> B -> C // // Suppose that we're currently compiling crate A, and start deserializing // metadata from crate B. When we deserialize a Span from crate B's metadata, // there are two posibilites: // // 1. The span references a file from crate B. This makes it a 'local' span, // which means that we can use crate B's serialized source map information. // 2. The span references a file from crate C. This makes it a 'foreign' span, // which means we need to use Crate *C* (not crate B) to determine the source // map information. We only record source map information for a file in the // crate that 'owns' it, so deserializing a Span may require us to look at // a transitive dependency. // // When we encode a foreign span, we adjust its 'lo' and 'high' values // to be based on the *foreign* crate (e.g. crate C), not the crate // we are writing metadata for (e.g. crate B). This allows us to // treat the 'local' and 'foreign' cases almost identically during deserialization: // we can call `imported_source_files` for the proper crate, and binary search // through the returned slice using our span. let imported_source_files = if tag == TAG_VALID_SPAN_LOCAL { self.cdata().imported_source_files(sess) } else { // FIXME: We don't decode dependencies of proc-macros. // Remove this once #69976 is merged if self.cdata().root.is_proc_macro_crate() { debug!( "SpecializedDecoder::specialized_decode: skipping span for proc-macro crate {:?}", self.cdata().cnum ); // Decode `CrateNum` as u32 - using `CrateNum::decode` will ICE // since we don't have `cnum_map` populated. // This advances the decoder position so that we can continue // to read metadata. let _ = u32::decode(self)?; return Ok(DUMMY_SP); } // tag is TAG_VALID_SPAN_FOREIGN, checked by `debug_assert` above let cnum = CrateNum::decode(self)?; debug!( "SpecializedDecoder::specialized_decode: loading source files from cnum {:?}", cnum ); // Decoding 'foreign' spans should be rare enough that it's // not worth it to maintain a per-CrateNum cache for `last_source_file_index`. // We just set it to 0, to ensure that we don't try to access something out // of bounds for our initial 'guess' self.last_source_file_index = 0; let foreign_data = self.cdata().cstore.get_crate_data(cnum); foreign_data.imported_source_files(sess) }; let source_file = { // Optimize for the case that most spans within a translated item // originate from the same source_file. let last_source_file = &imported_source_files[self.last_source_file_index]; if lo >= last_source_file.original_start_pos && lo <= last_source_file.original_end_pos { last_source_file } else { let index = imported_source_files .binary_search_by_key(&lo, |source_file| source_file.original_start_pos) .unwrap_or_else(|index| index - 1); // Don't try to cache the index for foreign spans, // as this would require a map from CrateNums to indices if tag == TAG_VALID_SPAN_LOCAL { self.last_source_file_index = index; } &imported_source_files[index] } }; // Make sure our binary search above is correct. debug_assert!( lo >= source_file.original_start_pos && lo <= source_file.original_end_pos, "Bad binary search: lo={:?} source_file.original_start_pos={:?} source_file.original_end_pos={:?}", lo, source_file.original_start_pos, source_file.original_end_pos ); // Make sure we correctly filtered out invalid spans during encoding debug_assert!( hi >= source_file.original_start_pos && hi <= source_file.original_end_pos, "Bad binary search: hi={:?} source_file.original_start_pos={:?} source_file.original_end_pos={:?}", hi, source_file.original_start_pos, source_file.original_end_pos ); let lo = (lo + source_file.translated_source_file.start_pos) - source_file.original_start_pos; let hi = (hi + source_file.translated_source_file.start_pos) - source_file.original_start_pos; Ok(Span::with_root_ctxt(lo, hi)) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result { Fingerprint::decode_opaque(&mut self.opaque) } } impl<'a, 'tcx, T: Decodable> SpecializedDecoder> for DecodeContext<'a, 'tcx> { #[inline] fn specialized_decode(&mut self) -> Result, Self::Error> { Ok(mir::ClearCrossCrate::Clear) } } implement_ty_decoder!(DecodeContext<'a, 'tcx>); impl MetadataBlob { crate fn new(metadata_ref: MetadataRef) -> MetadataBlob { MetadataBlob(metadata_ref) } crate fn is_compatible(&self) -> bool { self.raw_bytes().starts_with(METADATA_HEADER) } crate fn get_rustc_version(&self) -> String { Lazy::::from_position(NonZeroUsize::new(METADATA_HEADER.len() + 4).unwrap()) .decode(self) } crate fn get_root(&self) -> CrateRoot<'tcx> { let slice = self.raw_bytes(); let offset = METADATA_HEADER.len(); let pos = (((slice[offset + 0] as u32) << 24) | ((slice[offset + 1] as u32) << 16) | ((slice[offset + 2] as u32) << 8) | ((slice[offset + 3] as u32) << 0)) as usize; Lazy::>::from_position(NonZeroUsize::new(pos).unwrap()).decode(self) } crate fn list_crate_metadata(&self, out: &mut dyn io::Write) -> io::Result<()> { write!(out, "=External Dependencies=\n")?; let root = self.get_root(); for (i, dep) in root.crate_deps.decode(self).enumerate() { write!(out, "{} {}{}\n", i + 1, dep.name, dep.extra_filename)?; } write!(out, "\n")?; Ok(()) } } impl EntryKind { fn def_kind(&self) -> Option { Some(match *self { EntryKind::Const(..) => DefKind::Const, EntryKind::AssocConst(..) => DefKind::AssocConst, EntryKind::ImmStatic | EntryKind::MutStatic | EntryKind::ForeignImmStatic | EntryKind::ForeignMutStatic => DefKind::Static, EntryKind::Struct(_, _) => DefKind::Struct, EntryKind::Union(_, _) => DefKind::Union, EntryKind::Fn(_) | EntryKind::ForeignFn(_) => DefKind::Fn, EntryKind::AssocFn(_) => DefKind::AssocFn, EntryKind::Type => DefKind::TyAlias, EntryKind::TypeParam => DefKind::TyParam, EntryKind::ConstParam => DefKind::ConstParam, EntryKind::OpaqueTy => DefKind::OpaqueTy, EntryKind::AssocType(_) => DefKind::AssocTy, EntryKind::AssocOpaqueTy(_) => DefKind::AssocOpaqueTy, EntryKind::Mod(_) => DefKind::Mod, EntryKind::Variant(_) => DefKind::Variant, EntryKind::Trait(_) => DefKind::Trait, EntryKind::TraitAlias => DefKind::TraitAlias, EntryKind::Enum(..) => DefKind::Enum, EntryKind::MacroDef(_) => DefKind::Macro(MacroKind::Bang), EntryKind::ForeignType => DefKind::ForeignTy, EntryKind::ForeignMod | EntryKind::GlobalAsm | EntryKind::Impl(_) | EntryKind::Field | EntryKind::Generator(_) | EntryKind::Closure => return None, }) } } impl CrateRoot<'_> { crate fn is_proc_macro_crate(&self) -> bool { self.proc_macro_data.is_some() } crate fn name(&self) -> Symbol { self.name } crate fn disambiguator(&self) -> CrateDisambiguator { self.disambiguator } crate fn hash(&self) -> Svh { self.hash } crate fn triple(&self) -> &TargetTriple { &self.triple } crate fn decode_crate_deps( &self, metadata: &'a MetadataBlob, ) -> impl ExactSizeIterator + Captures<'a> { self.crate_deps.decode(metadata) } } impl<'a, 'tcx> CrateMetadataRef<'a> { fn is_proc_macro(&self, id: DefIndex) -> bool { self.root.proc_macro_data.and_then(|data| data.decode(self).find(|x| *x == id)).is_some() } fn maybe_kind(&self, item_id: DefIndex) -> Option { self.root.tables.kind.get(self, item_id).map(|k| k.decode(self)) } fn kind(&self, item_id: DefIndex) -> EntryKind { assert!(!self.is_proc_macro(item_id)); self.maybe_kind(item_id).unwrap_or_else(|| { bug!( "CrateMetadata::kind({:?}): id not found, in crate {:?} with number {}", item_id, self.root.name, self.cnum, ) }) } fn raw_proc_macro(&self, id: DefIndex) -> &ProcMacro { // DefIndex's in root.proc_macro_data have a one-to-one correspondence // with items in 'raw_proc_macros'. let pos = self.root.proc_macro_data.unwrap().decode(self).position(|i| i == id).unwrap(); &self.raw_proc_macros.unwrap()[pos] } fn item_ident(&self, item_index: DefIndex, sess: &Session) -> Ident { if !self.is_proc_macro(item_index) { let name = self .def_key(item_index) .disambiguated_data .data .get_opt_name() .expect("no name in item_ident"); let span = self .root .tables .ident_span .get(self, item_index) .map(|data| data.decode((self, sess))) .unwrap_or_else(|| panic!("Missing ident span for {:?} ({:?})", name, item_index)); Ident::new(name, span) } else { Ident::new( Symbol::intern(self.raw_proc_macro(item_index).name()), self.get_span(item_index, sess), ) } } fn def_kind(&self, index: DefIndex) -> Option { if !self.is_proc_macro(index) { self.kind(index).def_kind() } else { Some(DefKind::Macro(macro_kind(self.raw_proc_macro(index)))) } } fn get_span(&self, index: DefIndex, sess: &Session) -> Span { self.root.tables.span.get(self, index).unwrap().decode((self, sess)) } fn load_proc_macro(&self, id: DefIndex, sess: &Session) -> SyntaxExtension { let (name, kind, helper_attrs) = match *self.raw_proc_macro(id) { ProcMacro::CustomDerive { trait_name, attributes, client } => { let helper_attrs = attributes.iter().cloned().map(Symbol::intern).collect::>(); ( trait_name, SyntaxExtensionKind::Derive(Box::new(ProcMacroDerive { client })), helper_attrs, ) } ProcMacro::Attr { name, client } => { (name, SyntaxExtensionKind::Attr(Box::new(AttrProcMacro { client })), Vec::new()) } ProcMacro::Bang { name, client } => { (name, SyntaxExtensionKind::Bang(Box::new(BangProcMacro { client })), Vec::new()) } }; SyntaxExtension::new( &sess.parse_sess, kind, self.get_span(id, sess), helper_attrs, self.root.edition, Symbol::intern(name), &self.get_item_attrs(id, sess), ) } fn get_trait_def(&self, item_id: DefIndex, sess: &Session) -> ty::TraitDef { match self.kind(item_id) { EntryKind::Trait(data) => { let data = data.decode((self, sess)); ty::TraitDef::new( self.local_def_id(item_id), data.unsafety, data.paren_sugar, data.has_auto_impl, data.is_marker, data.specialization_kind, self.def_path_table.def_path_hash(item_id), ) } EntryKind::TraitAlias => ty::TraitDef::new( self.local_def_id(item_id), hir::Unsafety::Normal, false, false, false, ty::trait_def::TraitSpecializationKind::None, self.def_path_table.def_path_hash(item_id), ), _ => bug!("def-index does not refer to trait or trait alias"), } } fn get_variant( &self, tcx: TyCtxt<'tcx>, kind: &EntryKind, index: DefIndex, parent_did: DefId, sess: &Session, ) -> ty::VariantDef { let data = match kind { EntryKind::Variant(data) | EntryKind::Struct(data, _) | EntryKind::Union(data, _) => { data.decode(self) } _ => bug!(), }; let adt_kind = match kind { EntryKind::Variant(_) => ty::AdtKind::Enum, EntryKind::Struct(..) => ty::AdtKind::Struct, EntryKind::Union(..) => ty::AdtKind::Union, _ => bug!(), }; let variant_did = if adt_kind == ty::AdtKind::Enum { Some(self.local_def_id(index)) } else { None }; let ctor_did = data.ctor.map(|index| self.local_def_id(index)); ty::VariantDef::new( tcx, self.item_ident(index, sess), variant_did, ctor_did, data.discr, self.root .tables .children .get(self, index) .unwrap_or(Lazy::empty()) .decode(self) .map(|index| ty::FieldDef { did: self.local_def_id(index), ident: self.item_ident(index, sess), vis: self.get_visibility(index), }) .collect(), data.ctor_kind, adt_kind, parent_did, false, ) } fn get_adt_def(&self, item_id: DefIndex, tcx: TyCtxt<'tcx>) -> &'tcx ty::AdtDef { let kind = self.kind(item_id); let did = self.local_def_id(item_id); let (adt_kind, repr) = match kind { EntryKind::Enum(repr) => (ty::AdtKind::Enum, repr), EntryKind::Struct(_, repr) => (ty::AdtKind::Struct, repr), EntryKind::Union(_, repr) => (ty::AdtKind::Union, repr), _ => bug!("get_adt_def called on a non-ADT {:?}", did), }; let variants = if let ty::AdtKind::Enum = adt_kind { self.root .tables .children .get(self, item_id) .unwrap_or(Lazy::empty()) .decode(self) .map(|index| self.get_variant(tcx, &self.kind(index), index, did, tcx.sess)) .collect() } else { std::iter::once(self.get_variant(tcx, &kind, item_id, did, tcx.sess)).collect() }; tcx.alloc_adt_def(did, adt_kind, variants, repr) } fn get_explicit_predicates( &self, item_id: DefIndex, tcx: TyCtxt<'tcx>, ) -> ty::GenericPredicates<'tcx> { self.root.tables.explicit_predicates.get(self, item_id).unwrap().decode((self, tcx)) } fn get_inferred_outlives( &self, item_id: DefIndex, tcx: TyCtxt<'tcx>, ) -> &'tcx [(ty::Predicate<'tcx>, Span)] { self.root .tables .inferred_outlives .get(self, item_id) .map(|predicates| predicates.decode((self, tcx))) .unwrap_or_default() } fn get_super_predicates( &self, item_id: DefIndex, tcx: TyCtxt<'tcx>, ) -> ty::GenericPredicates<'tcx> { self.root.tables.super_predicates.get(self, item_id).unwrap().decode((self, tcx)) } fn get_generics(&self, item_id: DefIndex, sess: &Session) -> ty::Generics { self.root.tables.generics.get(self, item_id).unwrap().decode((self, sess)) } fn get_type(&self, id: DefIndex, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { self.root.tables.ty.get(self, id).unwrap().decode((self, tcx)) } fn get_stability(&self, id: DefIndex) -> Option { match self.is_proc_macro(id) { true => self.root.proc_macro_stability, false => self.root.tables.stability.get(self, id).map(|stab| stab.decode(self)), } } fn get_const_stability(&self, id: DefIndex) -> Option { self.root.tables.const_stability.get(self, id).map(|stab| stab.decode(self)) } fn get_deprecation(&self, id: DefIndex) -> Option { self.root .tables .deprecation .get(self, id) .filter(|_| !self.is_proc_macro(id)) .map(|depr| depr.decode(self)) } fn get_visibility(&self, id: DefIndex) -> ty::Visibility { match self.is_proc_macro(id) { true => ty::Visibility::Public, false => self.root.tables.visibility.get(self, id).unwrap().decode(self), } } fn get_impl_data(&self, id: DefIndex) -> ImplData { match self.kind(id) { EntryKind::Impl(data) => data.decode(self), _ => bug!(), } } fn get_parent_impl(&self, id: DefIndex) -> Option { self.get_impl_data(id).parent_impl } fn get_impl_polarity(&self, id: DefIndex) -> ty::ImplPolarity { self.get_impl_data(id).polarity } fn get_impl_defaultness(&self, id: DefIndex) -> hir::Defaultness { self.get_impl_data(id).defaultness } fn get_coerce_unsized_info(&self, id: DefIndex) -> Option { self.get_impl_data(id).coerce_unsized_info } fn get_impl_trait(&self, id: DefIndex, tcx: TyCtxt<'tcx>) -> Option> { self.root.tables.impl_trait_ref.get(self, id).map(|tr| tr.decode((self, tcx))) } /// Iterates over all the stability attributes in the given crate. fn get_lib_features(&self, tcx: TyCtxt<'tcx>) -> &'tcx [(ast::Name, Option)] { // FIXME: For a proc macro crate, not sure whether we should return the "host" // features or an empty Vec. Both don't cause ICEs. tcx.arena.alloc_from_iter(self.root.lib_features.decode(self)) } /// Iterates over the language items in the given crate. fn get_lang_items(&self, tcx: TyCtxt<'tcx>) -> &'tcx [(DefId, usize)] { if self.root.is_proc_macro_crate() { // Proc macro crates do not export any lang-items to the target. &[] } else { tcx.arena.alloc_from_iter( self.root .lang_items .decode(self) .map(|(def_index, index)| (self.local_def_id(def_index), index)), ) } } /// Iterates over the diagnostic items in the given crate. fn get_diagnostic_items(&self, tcx: TyCtxt<'tcx>) -> &'tcx FxHashMap { tcx.arena.alloc(if self.root.is_proc_macro_crate() { // Proc macro crates do not export any diagnostic-items to the target. Default::default() } else { self.root .diagnostic_items .decode(self) .map(|(name, def_index)| (name, self.local_def_id(def_index))) .collect() }) } /// Iterates over each child of the given item. fn each_child_of_item(&self, id: DefIndex, mut callback: F, sess: &Session) where F: FnMut(Export), { if let Some(proc_macros_ids) = self.root.proc_macro_data.map(|d| d.decode(self)) { /* If we are loading as a proc macro, we want to return the view of this crate * as a proc macro crate. */ if id == CRATE_DEF_INDEX { for def_index in proc_macros_ids { let raw_macro = self.raw_proc_macro(def_index); let res = Res::Def( DefKind::Macro(macro_kind(raw_macro)), self.local_def_id(def_index), ); let ident = Ident::from_str(raw_macro.name()); callback(Export { ident, res, vis: ty::Visibility::Public, span: DUMMY_SP }); } } return; } // Find the item. let kind = match self.maybe_kind(id) { None => return, Some(kind) => kind, }; // Iterate over all children. let macros_only = self.dep_kind.lock().macros_only(); let children = self.root.tables.children.get(self, id).unwrap_or(Lazy::empty()); for child_index in children.decode((self, sess)) { if macros_only { continue; } // Get the item. if let Some(child_kind) = self.maybe_kind(child_index) { match child_kind { EntryKind::MacroDef(..) => {} _ if macros_only => continue, _ => {} } // Hand off the item to the callback. match child_kind { // FIXME(eddyb) Don't encode these in children. EntryKind::ForeignMod => { let child_children = self .root .tables .children .get(self, child_index) .unwrap_or(Lazy::empty()); for child_index in child_children.decode((self, sess)) { if let Some(kind) = self.def_kind(child_index) { callback(Export { res: Res::Def(kind, self.local_def_id(child_index)), ident: self.item_ident(child_index, sess), vis: self.get_visibility(child_index), span: self .root .tables .span .get(self, child_index) .unwrap() .decode((self, sess)), }); } } continue; } EntryKind::Impl(_) => continue, _ => {} } let def_key = self.def_key(child_index); let span = self.get_span(child_index, sess); if let (Some(kind), true) = ( self.def_kind(child_index), def_key.disambiguated_data.data.get_opt_name().is_some(), ) { let ident = self.item_ident(child_index, sess); let vis = self.get_visibility(child_index); let def_id = self.local_def_id(child_index); let res = Res::Def(kind, def_id); callback(Export { res, ident, vis, span }); // For non-re-export structs and variants add their constructors to children. // Re-export lists automatically contain constructors when necessary. match kind { DefKind::Struct => { if let Some(ctor_def_id) = self.get_ctor_def_id(child_index) { let ctor_kind = self.get_ctor_kind(child_index); let ctor_res = Res::Def(DefKind::Ctor(CtorOf::Struct, ctor_kind), ctor_def_id); let vis = self.get_visibility(ctor_def_id.index); callback(Export { res: ctor_res, vis, ident, span }); } } DefKind::Variant => { // Braced variants, unlike structs, generate unusable names in // value namespace, they are reserved for possible future use. // It's ok to use the variant's id as a ctor id since an // error will be reported on any use of such resolution anyway. let ctor_def_id = self.get_ctor_def_id(child_index).unwrap_or(def_id); let ctor_kind = self.get_ctor_kind(child_index); let ctor_res = Res::Def(DefKind::Ctor(CtorOf::Variant, ctor_kind), ctor_def_id); let mut vis = self.get_visibility(ctor_def_id.index); if ctor_def_id == def_id && vis == ty::Visibility::Public { // For non-exhaustive variants lower the constructor visibility to // within the crate. We only need this for fictive constructors, // for other constructors correct visibilities // were already encoded in metadata. let attrs = self.get_item_attrs(def_id.index, sess); if attr::contains_name(&attrs, sym::non_exhaustive) { let crate_def_id = self.local_def_id(CRATE_DEF_INDEX); vis = ty::Visibility::Restricted(crate_def_id); } } callback(Export { res: ctor_res, ident, vis, span }); } _ => {} } } } } if let EntryKind::Mod(data) = kind { for exp in data.decode((self, sess)).reexports.decode((self, sess)) { match exp.res { Res::Def(DefKind::Macro(..), _) => {} _ if macros_only => continue, _ => {} } callback(exp); } } } fn is_item_mir_available(&self, id: DefIndex) -> bool { !self.is_proc_macro(id) && self.root.tables.mir.get(self, id).is_some() } fn get_optimized_mir(&self, tcx: TyCtxt<'tcx>, id: DefIndex) -> BodyAndCache<'tcx> { let mut cache = self .root .tables .mir .get(self, id) .filter(|_| !self.is_proc_macro(id)) .unwrap_or_else(|| { bug!("get_optimized_mir: missing MIR for `{:?}`", self.local_def_id(id)) }) .decode((self, tcx)); cache.ensure_predecessors(); cache } fn get_promoted_mir( &self, tcx: TyCtxt<'tcx>, id: DefIndex, ) -> IndexVec> { let mut cache = self .root .tables .promoted_mir .get(self, id) .filter(|_| !self.is_proc_macro(id)) .unwrap_or_else(|| { bug!("get_promoted_mir: missing MIR for `{:?}`", self.local_def_id(id)) }) .decode((self, tcx)); for body in cache.iter_mut() { body.ensure_predecessors(); } cache } fn mir_const_qualif(&self, id: DefIndex) -> mir::ConstQualifs { match self.kind(id) { EntryKind::Const(qualif, _) | EntryKind::AssocConst( AssocContainer::ImplDefault | AssocContainer::ImplFinal, qualif, _, ) => qualif, _ => bug!(), } } fn get_associated_item(&self, id: DefIndex, sess: &Session) -> ty::AssocItem { let def_key = self.def_key(id); let parent = self.local_def_id(def_key.parent.unwrap()); let ident = self.item_ident(id, sess); let (kind, container, has_self) = match self.kind(id) { EntryKind::AssocConst(container, _, _) => (ty::AssocKind::Const, container, false), EntryKind::AssocFn(data) => { let data = data.decode(self); (ty::AssocKind::Fn, data.container, data.has_self) } EntryKind::AssocType(container) => (ty::AssocKind::Type, container, false), EntryKind::AssocOpaqueTy(container) => (ty::AssocKind::OpaqueTy, container, false), _ => bug!("cannot get associated-item of `{:?}`", def_key), }; ty::AssocItem { ident, kind, vis: self.get_visibility(id), defaultness: container.defaultness(), def_id: self.local_def_id(id), container: container.with_def_id(parent), fn_has_self_parameter: has_self, } } fn get_item_variances(&self, id: DefIndex) -> Vec { self.root.tables.variances.get(self, id).unwrap_or(Lazy::empty()).decode(self).collect() } fn get_ctor_kind(&self, node_id: DefIndex) -> CtorKind { match self.kind(node_id) { EntryKind::Struct(data, _) | EntryKind::Union(data, _) | EntryKind::Variant(data) => { data.decode(self).ctor_kind } _ => CtorKind::Fictive, } } fn get_ctor_def_id(&self, node_id: DefIndex) -> Option { match self.kind(node_id) { EntryKind::Struct(data, _) => { data.decode(self).ctor.map(|index| self.local_def_id(index)) } EntryKind::Variant(data) => { data.decode(self).ctor.map(|index| self.local_def_id(index)) } _ => None, } } fn get_item_attrs(&self, node_id: DefIndex, sess: &Session) -> Vec { // The attributes for a tuple struct/variant are attached to the definition, not the ctor; // we assume that someone passing in a tuple struct ctor is actually wanting to // look at the definition let def_key = self.def_key(node_id); let item_id = if def_key.disambiguated_data.data == DefPathData::Ctor { def_key.parent.unwrap() } else { node_id }; self.root .tables .attributes .get(self, item_id) .unwrap_or(Lazy::empty()) .decode((self, sess)) .collect::>() } fn get_struct_field_names(&self, id: DefIndex, sess: &Session) -> Vec> { self.root .tables .children .get(self, id) .unwrap_or(Lazy::empty()) .decode(self) .map(|index| respan(self.get_span(index, sess), self.item_ident(index, sess).name)) .collect() } fn get_inherent_implementations_for_type( &self, tcx: TyCtxt<'tcx>, id: DefIndex, ) -> &'tcx [DefId] { tcx.arena.alloc_from_iter( self.root .tables .inherent_impls .get(self, id) .unwrap_or(Lazy::empty()) .decode(self) .map(|index| self.local_def_id(index)), ) } fn get_implementations_for_trait( &self, tcx: TyCtxt<'tcx>, filter: Option, ) -> &'tcx [DefId] { if self.root.is_proc_macro_crate() { // proc-macro crates export no trait impls. return &[]; } // Do a reverse lookup beforehand to avoid touching the crate_num // hash map in the loop below. let filter = match filter.map(|def_id| self.reverse_translate_def_id(def_id)) { Some(Some(def_id)) => Some((def_id.krate.as_u32(), def_id.index)), Some(None) => return &[], None => None, }; if let Some(filter) = filter { if let Some(impls) = self.trait_impls.get(&filter) { tcx.arena.alloc_from_iter(impls.decode(self).map(|idx| self.local_def_id(idx))) } else { &[] } } else { tcx.arena.alloc_from_iter( self.trait_impls .values() .flat_map(|impls| impls.decode(self).map(|idx| self.local_def_id(idx))), ) } } fn get_trait_of_item(&self, id: DefIndex) -> Option { let def_key = self.def_key(id); match def_key.disambiguated_data.data { DefPathData::TypeNs(..) | DefPathData::ValueNs(..) => (), // Not an associated item _ => return None, } def_key.parent.and_then(|parent_index| match self.kind(parent_index) { EntryKind::Trait(_) | EntryKind::TraitAlias => Some(self.local_def_id(parent_index)), _ => None, }) } fn get_native_libraries(&self, sess: &Session) -> Vec { if self.root.is_proc_macro_crate() { // Proc macro crates do not have any *target* native libraries. vec![] } else { self.root.native_libraries.decode((self, sess)).collect() } } fn get_foreign_modules(&self, tcx: TyCtxt<'tcx>) -> &'tcx [ForeignModule] { if self.root.is_proc_macro_crate() { // Proc macro crates do not have any *target* foreign modules. &[] } else { tcx.arena.alloc_from_iter(self.root.foreign_modules.decode((self, tcx.sess))) } } fn get_dylib_dependency_formats( &self, tcx: TyCtxt<'tcx>, ) -> &'tcx [(CrateNum, LinkagePreference)] { tcx.arena.alloc_from_iter( self.root.dylib_dependency_formats.decode(self).enumerate().flat_map(|(i, link)| { let cnum = CrateNum::new(i + 1); link.map(|link| (self.cnum_map[cnum], link)) }), ) } fn get_missing_lang_items(&self, tcx: TyCtxt<'tcx>) -> &'tcx [lang_items::LangItem] { if self.root.is_proc_macro_crate() { // Proc macro crates do not depend on any target weak lang-items. &[] } else { tcx.arena.alloc_from_iter(self.root.lang_items_missing.decode(self)) } } fn get_fn_param_names(&self, tcx: TyCtxt<'tcx>, id: DefIndex) -> &'tcx [ast::Name] { let param_names = match self.kind(id) { EntryKind::Fn(data) | EntryKind::ForeignFn(data) => data.decode(self).param_names, EntryKind::AssocFn(data) => data.decode(self).fn_data.param_names, _ => Lazy::empty(), }; tcx.arena.alloc_from_iter(param_names.decode(self)) } fn exported_symbols( &self, tcx: TyCtxt<'tcx>, ) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportLevel)] { if self.root.is_proc_macro_crate() { // If this crate is a custom derive crate, then we're not even going to // link those in so we skip those crates. &[] } else { tcx.arena.alloc_from_iter(self.root.exported_symbols.decode((self, tcx))) } } fn get_rendered_const(&self, id: DefIndex) -> String { match self.kind(id) { EntryKind::Const(_, data) | EntryKind::AssocConst(_, _, data) => data.decode(self).0, _ => bug!(), } } fn get_macro(&self, id: DefIndex, sess: &Session) -> MacroDef { match self.kind(id) { EntryKind::MacroDef(macro_def) => macro_def.decode((self, sess)), _ => bug!(), } } // This replicates some of the logic of the crate-local `is_const_fn_raw` query, because we // don't serialize constness for tuple variant and tuple struct constructors. fn is_const_fn_raw(&self, id: DefIndex) -> bool { let constness = match self.kind(id) { EntryKind::AssocFn(data) => data.decode(self).fn_data.constness, EntryKind::Fn(data) => data.decode(self).constness, // Some intrinsics can be const fn. While we could recompute this (at least until we // stop having hardcoded whitelists and move to stability attributes), it seems cleaner // to treat all const fns equally. EntryKind::ForeignFn(data) => data.decode(self).constness, EntryKind::Variant(..) | EntryKind::Struct(..) => hir::Constness::Const, _ => hir::Constness::NotConst, }; constness == hir::Constness::Const } fn asyncness(&self, id: DefIndex) -> hir::IsAsync { match self.kind(id) { EntryKind::Fn(data) => data.decode(self).asyncness, EntryKind::AssocFn(data) => data.decode(self).fn_data.asyncness, EntryKind::ForeignFn(data) => data.decode(self).asyncness, _ => bug!("asyncness: expected function kind"), } } fn is_foreign_item(&self, id: DefIndex) -> bool { match self.kind(id) { EntryKind::ForeignImmStatic | EntryKind::ForeignMutStatic | EntryKind::ForeignFn(_) => { true } _ => false, } } fn static_mutability(&self, id: DefIndex) -> Option { match self.kind(id) { EntryKind::ImmStatic | EntryKind::ForeignImmStatic => Some(hir::Mutability::Not), EntryKind::MutStatic | EntryKind::ForeignMutStatic => Some(hir::Mutability::Mut), _ => None, } } fn generator_kind(&self, id: DefIndex) -> Option { match self.kind(id) { EntryKind::Generator(data) => Some(data), _ => None, } } fn fn_sig(&self, id: DefIndex, tcx: TyCtxt<'tcx>) -> ty::PolyFnSig<'tcx> { self.root.tables.fn_sig.get(self, id).unwrap().decode((self, tcx)) } #[inline] fn def_key(&self, index: DefIndex) -> DefKey { let mut key = self.def_path_table.def_key(index); if self.is_proc_macro(index) { let name = self.raw_proc_macro(index).name(); key.disambiguated_data.data = DefPathData::MacroNs(Symbol::intern(name)); } key } // Returns the path leading to the thing with this `id`. fn def_path(&self, id: DefIndex) -> DefPath { debug!("def_path(cnum={:?}, id={:?})", self.cnum, id); DefPath::make(self.cnum, id, |parent| self.def_key(parent)) } /// Imports the source_map from an external crate into the source_map of the crate /// currently being compiled (the "local crate"). /// /// The import algorithm works analogous to how AST items are inlined from an /// external crate's metadata: /// For every SourceFile in the external source_map an 'inline' copy is created in the /// local source_map. The correspondence relation between external and local /// SourceFiles is recorded in the `ImportedSourceFile` objects returned from this /// function. When an item from an external crate is later inlined into this /// crate, this correspondence information is used to translate the span /// information of the inlined item so that it refers the correct positions in /// the local source_map (see `>`). /// /// The import algorithm in the function below will reuse SourceFiles already /// existing in the local source_map. For example, even if the SourceFile of some /// source file of libstd gets imported many times, there will only ever be /// one SourceFile object for the corresponding file in the local source_map. /// /// Note that imported SourceFiles do not actually contain the source code of the /// file they represent, just information about length, line breaks, and /// multibyte characters. This information is enough to generate valid debuginfo /// for items inlined from other crates. /// /// Proc macro crates don't currently export spans, so this function does not have /// to work for them. fn imported_source_files(&self, sess: &Session) -> &'a [ImportedSourceFile] { // Translate the virtual `/rustc/$hash` prefix back to a real directory // that should hold actual sources, where possible. let virtual_rust_source_base_dir = option_env!("CFG_VIRTUAL_RUST_SOURCE_BASE_DIR") .map(Path::new) .filter(|_| { // Only spend time on further checks if we have what to translate *to*. sess.real_rust_source_base_dir.is_some() }) .filter(|virtual_dir| { // Don't translate away `/rustc/$hash` if we're still remapping to it, // since that means we're still building `std`/`rustc` that need it, // and we don't want the real path to leak into codegen/debuginfo. !sess.opts.remap_path_prefix.iter().any(|(_from, to)| to == virtual_dir) }); let try_to_translate_virtual_to_real = |name: &mut rustc_span::FileName| { debug!( "try_to_translate_virtual_to_real(name={:?}): \ virtual_rust_source_base_dir={:?}, real_rust_source_base_dir={:?}", name, virtual_rust_source_base_dir, sess.real_rust_source_base_dir, ); if let Some(virtual_dir) = virtual_rust_source_base_dir { if let Some(real_dir) = &sess.real_rust_source_base_dir { if let rustc_span::FileName::Real(old_name) = name { if let rustc_span::RealFileName::Named(one_path) = old_name { if let Ok(rest) = one_path.strip_prefix(virtual_dir) { let virtual_name = one_path.clone(); let new_path = real_dir.join(rest); debug!( "try_to_translate_virtual_to_real: `{}` -> `{}`", virtual_name.display(), new_path.display(), ); let new_name = rustc_span::RealFileName::Devirtualized { local_path: new_path, virtual_name, }; *old_name = new_name; } } } } } }; self.cdata.source_map_import_info.init_locking(|| { let external_source_map = self.root.source_map.decode(self); external_source_map .map(|source_file_to_import| { // We can't reuse an existing SourceFile, so allocate a new one // containing the information we need. let rustc_span::SourceFile { mut name, name_was_remapped, src_hash, start_pos, end_pos, mut lines, mut multibyte_chars, mut non_narrow_chars, mut normalized_pos, name_hash, .. } = source_file_to_import; // If this file's path has been remapped to `/rustc/$hash`, // we might be able to reverse that (also see comments above, // on `try_to_translate_virtual_to_real`). // FIXME(eddyb) we could check `name_was_remapped` here, // but in practice it seems to be always `false`. try_to_translate_virtual_to_real(&mut name); let source_length = (end_pos - start_pos).to_usize(); // Translate line-start positions and multibyte character // position into frame of reference local to file. // `SourceMap::new_imported_source_file()` will then translate those // coordinates to their new global frame of reference when the // offset of the SourceFile is known. for pos in &mut lines { *pos = *pos - start_pos; } for mbc in &mut multibyte_chars { mbc.pos = mbc.pos - start_pos; } for swc in &mut non_narrow_chars { *swc = *swc - start_pos; } for np in &mut normalized_pos { np.pos = np.pos - start_pos; } let local_version = sess.source_map().new_imported_source_file( name, name_was_remapped, src_hash, name_hash, source_length, self.cnum, lines, multibyte_chars, non_narrow_chars, normalized_pos, start_pos, end_pos, ); debug!( "CrateMetaData::imported_source_files alloc \ source_file {:?} original (start_pos {:?} end_pos {:?}) \ translated (start_pos {:?} end_pos {:?})", local_version.name, start_pos, end_pos, local_version.start_pos, local_version.end_pos ); ImportedSourceFile { original_start_pos: start_pos, original_end_pos: end_pos, translated_source_file: local_version, } }) .collect() }) } } impl CrateMetadata { crate fn new( sess: &Session, blob: MetadataBlob, root: CrateRoot<'static>, raw_proc_macros: Option<&'static [ProcMacro]>, cnum: CrateNum, cnum_map: CrateNumMap, dep_kind: DepKind, source: CrateSource, private_dep: bool, host_hash: Option, ) -> CrateMetadata { let def_path_table = record_time(&sess.perf_stats.decode_def_path_tables_time, || { root.def_path_table.decode((&blob, sess)) }); let trait_impls = root .impls .decode((&blob, sess)) .map(|trait_impls| (trait_impls.trait_id, trait_impls.impls)) .collect(); let alloc_decoding_state = AllocDecodingState::new(root.interpret_alloc_index.decode(&blob).collect()); let dependencies = Lock::new(cnum_map.iter().cloned().collect()); CrateMetadata { blob, root, def_path_table, trait_impls, raw_proc_macros, source_map_import_info: Once::new(), alloc_decoding_state, dep_node_index: AtomicCell::new(DepNodeIndex::INVALID), cnum, cnum_map, dependencies, dep_kind: Lock::new(dep_kind), source, private_dep, host_hash, extern_crate: Lock::new(None), } } crate fn dependencies(&self) -> LockGuard<'_, Vec> { self.dependencies.borrow() } crate fn add_dependency(&self, cnum: CrateNum) { self.dependencies.borrow_mut().push(cnum); } crate fn update_extern_crate(&self, new_extern_crate: ExternCrate) -> bool { let mut extern_crate = self.extern_crate.borrow_mut(); let update = Some(new_extern_crate.rank()) > extern_crate.as_ref().map(ExternCrate::rank); if update { *extern_crate = Some(new_extern_crate); } update } crate fn source(&self) -> &CrateSource { &self.source } crate fn dep_kind(&self) -> DepKind { *self.dep_kind.lock() } crate fn update_dep_kind(&self, f: impl FnOnce(DepKind) -> DepKind) { self.dep_kind.with_lock(|dep_kind| *dep_kind = f(*dep_kind)) } crate fn panic_strategy(&self) -> PanicStrategy { self.root.panic_strategy } crate fn needs_panic_runtime(&self) -> bool { self.root.needs_panic_runtime } crate fn is_panic_runtime(&self) -> bool { self.root.panic_runtime } crate fn is_profiler_runtime(&self) -> bool { self.root.profiler_runtime } crate fn needs_allocator(&self) -> bool { self.root.needs_allocator } crate fn has_global_allocator(&self) -> bool { self.root.has_global_allocator } crate fn has_default_lib_allocator(&self) -> bool { self.root.has_default_lib_allocator } crate fn is_proc_macro_crate(&self) -> bool { self.root.is_proc_macro_crate() } crate fn name(&self) -> Symbol { self.root.name } crate fn disambiguator(&self) -> CrateDisambiguator { self.root.disambiguator } crate fn hash(&self) -> Svh { self.root.hash } fn local_def_id(&self, index: DefIndex) -> DefId { DefId { krate: self.cnum, index } } // Translate a DefId from the current compilation environment to a DefId // for an external crate. fn reverse_translate_def_id(&self, did: DefId) -> Option { for (local, &global) in self.cnum_map.iter_enumerated() { if global == did.krate { return Some(DefId { krate: local, index: did.index }); } } None } #[inline] fn def_path_hash(&self, index: DefIndex) -> DefPathHash { self.def_path_table.def_path_hash(index) } /// Get the `DepNodeIndex` corresponding this crate. The result of this /// method is cached in the `dep_node_index` field. fn get_crate_dep_node_index(&self, tcx: TyCtxt<'tcx>) -> DepNodeIndex { let mut dep_node_index = self.dep_node_index.load(); if unlikely!(dep_node_index == DepNodeIndex::INVALID) { // We have not cached the DepNodeIndex for this upstream crate yet, // so use the dep-graph to find it out and cache it. // Note that multiple threads can enter this block concurrently. // That is fine because the DepNodeIndex remains constant // throughout the whole compilation session, and multiple stores // would always write the same value. let def_path_hash = self.def_path_hash(CRATE_DEF_INDEX); let dep_node = DepNode::from_def_path_hash(def_path_hash, dep_graph::DepKind::CrateMetadata); dep_node_index = tcx.dep_graph.dep_node_index_of(&dep_node); assert!(dep_node_index != DepNodeIndex::INVALID); self.dep_node_index.store(dep_node_index); } dep_node_index } } // Cannot be implemented on 'ProcMacro', as libproc_macro // does not depend on librustc_ast fn macro_kind(raw: &ProcMacro) -> MacroKind { match raw { ProcMacro::CustomDerive { .. } => MacroKind::Derive, ProcMacro::Attr { .. } => MacroKind::Attr, ProcMacro::Bang { .. } => MacroKind::Bang, } }