summaryrefslogtreecommitdiff
path: root/drivers/remoteproc/ti_k3_m4_remoteproc.c
blob: 09f0484a90e103c7838169f88984d21b58a87c6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
// SPDX-License-Identifier: GPL-2.0-only
/*
 * TI K3 Cortex-M4 Remote Processor(s) driver
 *
 * Copyright (C) 2021-2024 Texas Instruments Incorporated - https://www.ti.com/
 *	Hari Nagalla <hnagalla@ti.com>
 */

#include <linux/io.h>
#include <linux/mailbox_client.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_reserved_mem.h>
#include <linux/platform_device.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/slab.h>

#include "omap_remoteproc.h"
#include "remoteproc_internal.h"
#include "ti_sci_proc.h"

#define K3_M4_IRAM_DEV_ADDR 0x00000
#define K3_M4_DRAM_DEV_ADDR 0x30000

/**
 * struct k3_m4_rproc_mem - internal memory structure
 * @cpu_addr: MPU virtual address of the memory region
 * @bus_addr: Bus address used to access the memory region
 * @dev_addr: Device address of the memory region from remote processor view
 * @size: Size of the memory region
 */
struct k3_m4_rproc_mem {
	void __iomem *cpu_addr;
	phys_addr_t bus_addr;
	u32 dev_addr;
	size_t size;
};

/**
 * struct k3_m4_rproc_mem_data - memory definitions for a remote processor
 * @name: name for this memory entry
 * @dev_addr: device address for the memory entry
 */
struct k3_m4_rproc_mem_data {
	const char *name;
	const u32 dev_addr;
};

/**
 * struct k3_m4_rproc - k3 remote processor driver structure
 * @dev: cached device pointer
 * @mem: internal memory regions data
 * @num_mems: number of internal memory regions
 * @rmem: reserved memory regions data
 * @num_rmems: number of reserved memory regions
 * @reset: reset control handle
 * @tsp: TI-SCI processor control handle
 * @ti_sci: TI-SCI handle
 * @ti_sci_id: TI-SCI device identifier
 * @mbox: mailbox channel handle
 * @client: mailbox client to request the mailbox channel
 */
struct k3_m4_rproc {
	struct device *dev;
	struct k3_m4_rproc_mem *mem;
	int num_mems;
	struct k3_m4_rproc_mem *rmem;
	int num_rmems;
	struct reset_control *reset;
	struct ti_sci_proc *tsp;
	const struct ti_sci_handle *ti_sci;
	u32 ti_sci_id;
	struct mbox_chan *mbox;
	struct mbox_client client;
};

/**
 * k3_m4_rproc_mbox_callback() - inbound mailbox message handler
 * @client: mailbox client pointer used for requesting the mailbox channel
 * @data: mailbox payload
 *
 * This handler is invoked by the K3 mailbox driver whenever a mailbox
 * message is received. Usually, the mailbox payload simply contains
 * the index of the virtqueue that is kicked by the remote processor,
 * and we let remoteproc core handle it.
 *
 * In addition to virtqueue indices, we also have some out-of-band values
 * that indicate different events. Those values are deliberately very
 * large so they don't coincide with virtqueue indices.
 */
static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data)
{
	struct device *dev = client->dev;
	struct rproc *rproc = dev_get_drvdata(dev);
	u32 msg = (u32)(uintptr_t)(data);

	dev_dbg(dev, "mbox msg: 0x%x\n", msg);

	switch (msg) {
	case RP_MBOX_CRASH:
		/*
		 * remoteproc detected an exception, but error recovery is not
		 * supported. So, just log this for now
		 */
		dev_err(dev, "K3 rproc %s crashed\n", rproc->name);
		break;
	case RP_MBOX_ECHO_REPLY:
		dev_info(dev, "received echo reply from %s\n", rproc->name);
		break;
	default:
		/* silently handle all other valid messages */
		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
			return;
		if (msg > rproc->max_notifyid) {
			dev_dbg(dev, "dropping unknown message 0x%x", msg);
			return;
		}
		/* msg contains the index of the triggered vring */
		if (rproc_vq_interrupt(rproc, msg) == IRQ_NONE)
			dev_dbg(dev, "no message was found in vqid %d\n", msg);
	}
}

/*
 * Kick the remote processor to notify about pending unprocessed messages.
 * The vqid usage is not used and is inconsequential, as the kick is performed
 * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
 * the remote processor is expected to process both its Tx and Rx virtqueues.
 */
static void k3_m4_rproc_kick(struct rproc *rproc, int vqid)
{
	struct k3_m4_rproc *kproc = rproc->priv;
	struct device *dev = kproc->dev;
	u32 msg = (u32)vqid;
	int ret;

	/*
	 * Send the index of the triggered virtqueue in the mailbox payload.
	 * NOTE: msg is cast to uintptr_t to prevent compiler warnings when
	 * void* is 64bit. It is safely cast back to u32 in the mailbox driver.
	 */
	ret = mbox_send_message(kproc->mbox, (void *)(uintptr_t)msg);
	if (ret < 0)
		dev_err(dev, "failed to send mailbox message, status = %d\n",
			ret);
}

static int k3_m4_rproc_ping_mbox(struct k3_m4_rproc *kproc)
{
	struct device *dev = kproc->dev;
	int ret;

	/*
	 * Ping the remote processor, this is only for sanity-sake for now;
	 * there is no functional effect whatsoever.
	 *
	 * Note that the reply will _not_ arrive immediately: this message
	 * will wait in the mailbox fifo until the remote processor is booted.
	 */
	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
	if (ret < 0) {
		dev_err(dev, "mbox_send_message failed: %d\n", ret);
		return ret;
	}

	return 0;
}

/*
 * The M4 cores have a local reset that affects only the CPU, and a
 * generic module reset that powers on the device and allows the internal
 * memories to be accessed while the local reset is asserted. This function is
 * used to release the global reset on remote cores to allow loading into the
 * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
 * firmware loading, and is followed by the .start() ops after loading to
 * actually let the remote cores to run.
 */
static int k3_m4_rproc_prepare(struct rproc *rproc)
{
	struct k3_m4_rproc *kproc = rproc->priv;
	struct device *dev = kproc->dev;
	int ret;

	/* If the core is running already no need to deassert the module reset */
	if (rproc->state == RPROC_DETACHED)
		return 0;

	/*
	 * Ensure the local reset is asserted so the core doesn't
	 * execute bogus code when the module reset is released.
	 */
	ret = reset_control_assert(kproc->reset);
	if (ret) {
		dev_err(dev, "could not assert local reset\n");
		return ret;
	}

	ret = reset_control_status(kproc->reset);
	if (ret <= 0) {
		dev_err(dev, "local reset still not asserted\n");
		return ret;
	}

	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
						    kproc->ti_sci_id);
	if (ret) {
		dev_err(dev, "could not deassert module-reset for internal RAM loading\n");
		return ret;
	}

	return 0;
}

/*
 * This function implements the .unprepare() ops and performs the complimentary
 * operations to that of the .prepare() ops. The function is used to assert the
 * global reset on applicable cores. This completes the second portion of
 * powering down the remote core. The cores themselves are only halted in the
 * .stop() callback through the local reset, and the .unprepare() ops is invoked
 * by the remoteproc core after the remoteproc is stopped to balance the global
 * reset.
 */
static int k3_m4_rproc_unprepare(struct rproc *rproc)
{
	struct k3_m4_rproc *kproc = rproc->priv;
	struct device *dev = kproc->dev;
	int ret;

	/* If the core is going to be detached do not assert the module reset */
	if (rproc->state == RPROC_ATTACHED)
		return 0;

	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
						    kproc->ti_sci_id);
	if (ret) {
		dev_err(dev, "module-reset assert failed\n");
		return ret;
	}

	return 0;
}

/*
 * This function implements the .get_loaded_rsc_table() callback and is used
 * to provide the resource table for a booted remote processor in IPC-only
 * mode. The remote processor firmwares follow a design-by-contract approach
 * and are expected to have the resource table at the base of the DDR region
 * reserved for firmware usage. This provides flexibility for the remote
 * processor to be booted by different bootloaders that may or may not have the
 * ability to publish the resource table address and size through a DT
 * property.
 */
static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc,
							 size_t *rsc_table_sz)
{
	struct k3_m4_rproc *kproc = rproc->priv;
	struct device *dev = kproc->dev;

	if (!kproc->rmem[0].cpu_addr) {
		dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
		return ERR_PTR(-ENOMEM);
	}

	/*
	 * NOTE: The resource table size is currently hard-coded to a maximum
	 * of 256 bytes. The most common resource table usage for K3 firmwares
	 * is to only have the vdev resource entry and an optional trace entry.
	 * The exact size could be computed based on resource table address, but
	 * the hard-coded value suffices to support the IPC-only mode.
	 */
	*rsc_table_sz = 256;
	return (__force struct resource_table *)kproc->rmem[0].cpu_addr;
}

/*
 * Custom function to translate a remote processor device address (internal
 * RAMs only) to a kernel virtual address.  The remote processors can access
 * their RAMs at either an internal address visible only from a remote
 * processor, or at the SoC-level bus address. Both these addresses need to be
 * looked through for translation. The translated addresses can be used either
 * by the remoteproc core for loading (when using kernel remoteproc loader), or
 * by any rpmsg bus drivers.
 */
static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
	struct k3_m4_rproc *kproc = rproc->priv;
	void __iomem *va = NULL;
	phys_addr_t bus_addr;
	u32 dev_addr, offset;
	size_t size;
	int i;

	if (len == 0)
		return NULL;

	for (i = 0; i < kproc->num_mems; i++) {
		bus_addr = kproc->mem[i].bus_addr;
		dev_addr = kproc->mem[i].dev_addr;
		size = kproc->mem[i].size;

		/* handle M4-view addresses */
		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
			offset = da - dev_addr;
			va = kproc->mem[i].cpu_addr + offset;
			return (__force void *)va;
		}

		/* handle SoC-view addresses */
		if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
			offset = da - bus_addr;
			va = kproc->mem[i].cpu_addr + offset;
			return (__force void *)va;
		}
	}

	/* handle static DDR reserved memory regions */
	for (i = 0; i < kproc->num_rmems; i++) {
		dev_addr = kproc->rmem[i].dev_addr;
		size = kproc->rmem[i].size;

		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
			offset = da - dev_addr;
			va = kproc->rmem[i].cpu_addr + offset;
			return (__force void *)va;
		}
	}

	return NULL;
}

static int k3_m4_rproc_of_get_memories(struct platform_device *pdev,
				       struct k3_m4_rproc *kproc)
{
	static const char * const mem_names[] = { "iram", "dram" };
	static const u32 mem_addrs[] = { K3_M4_IRAM_DEV_ADDR, K3_M4_DRAM_DEV_ADDR };
	struct device *dev = &pdev->dev;
	struct resource *res;
	int num_mems;
	int i;

	num_mems = ARRAY_SIZE(mem_names);
	kproc->mem = devm_kcalloc(kproc->dev, num_mems,
				  sizeof(*kproc->mem), GFP_KERNEL);
	if (!kproc->mem)
		return -ENOMEM;

	for (i = 0; i < num_mems; i++) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
						   mem_names[i]);
		if (!res) {
			dev_err(dev, "found no memory resource for %s\n",
				mem_names[i]);
			return -EINVAL;
		}
		if (!devm_request_mem_region(dev, res->start,
					     resource_size(res),
					     dev_name(dev))) {
			dev_err(dev, "could not request %s region for resource\n",
				mem_names[i]);
			return -EBUSY;
		}

		kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
							 resource_size(res));
		if (!kproc->mem[i].cpu_addr) {
			dev_err(dev, "failed to map %s memory\n",
				mem_names[i]);
			return -ENOMEM;
		}
		kproc->mem[i].bus_addr = res->start;
		kproc->mem[i].dev_addr = mem_addrs[i];
		kproc->mem[i].size = resource_size(res);

		dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
			mem_names[i], &kproc->mem[i].bus_addr,
			kproc->mem[i].size, kproc->mem[i].cpu_addr,
			kproc->mem[i].dev_addr);
	}
	kproc->num_mems = num_mems;

	return 0;
}

static void k3_m4_rproc_dev_mem_release(void *data)
{
	struct device *dev = data;

	of_reserved_mem_device_release(dev);
}

static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc)
{
	struct device *dev = kproc->dev;
	struct device_node *np = dev->of_node;
	struct device_node *rmem_np;
	struct reserved_mem *rmem;
	int num_rmems;
	int ret, i;

	num_rmems = of_property_count_elems_of_size(np, "memory-region",
						    sizeof(phandle));
	if (num_rmems < 0) {
		dev_err(dev, "device does not reserved memory regions (%d)\n",
			num_rmems);
		return -EINVAL;
	}
	if (num_rmems < 2) {
		dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
			num_rmems);
		return -EINVAL;
	}

	/* use reserved memory region 0 for vring DMA allocations */
	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
	if (ret) {
		dev_err(dev, "device cannot initialize DMA pool (%d)\n", ret);
		return ret;
	}
	ret = devm_add_action_or_reset(dev, k3_m4_rproc_dev_mem_release, dev);
	if (ret)
		return ret;

	num_rmems--;
	kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
	if (!kproc->rmem)
		return -ENOMEM;

	/* use remaining reserved memory regions for static carveouts */
	for (i = 0; i < num_rmems; i++) {
		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
		if (!rmem_np)
			return -EINVAL;

		rmem = of_reserved_mem_lookup(rmem_np);
		if (!rmem) {
			of_node_put(rmem_np);
			return -EINVAL;
		}
		of_node_put(rmem_np);

		kproc->rmem[i].bus_addr = rmem->base;
		/* 64-bit address regions currently not supported */
		kproc->rmem[i].dev_addr = (u32)rmem->base;
		kproc->rmem[i].size = rmem->size;
		kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size);
		if (!kproc->rmem[i].cpu_addr) {
			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
				i + 1, &rmem->base, &rmem->size);
			return -ENOMEM;
		}

		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
			i + 1, &kproc->rmem[i].bus_addr,
			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
			kproc->rmem[i].dev_addr);
	}
	kproc->num_rmems = num_rmems;

	return 0;
}

static void k3_m4_release_tsp(void *data)
{
	struct ti_sci_proc *tsp = data;

	ti_sci_proc_release(tsp);
}

/*
 * Power up the M4 remote processor.
 *
 * This function will be invoked only after the firmware for this rproc
 * was loaded, parsed successfully, and all of its resource requirements
 * were met. This callback is invoked only in remoteproc mode.
 */
static int k3_m4_rproc_start(struct rproc *rproc)
{
	struct k3_m4_rproc *kproc = rproc->priv;
	struct device *dev = kproc->dev;
	int ret;

	ret = k3_m4_rproc_ping_mbox(kproc);
	if (ret)
		return ret;

	ret = reset_control_deassert(kproc->reset);
	if (ret) {
		dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
		return ret;
	}

	return 0;
}

/*
 * Stop the M4 remote processor.
 *
 * This function puts the M4 processor into reset, and finishes processing
 * of any pending messages. This callback is invoked only in remoteproc mode.
 */
static int k3_m4_rproc_stop(struct rproc *rproc)
{
	struct k3_m4_rproc *kproc = rproc->priv;
	struct device *dev = kproc->dev;
	int ret;

	ret = reset_control_assert(kproc->reset);
	if (ret) {
		dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
		return ret;
	}

	return 0;
}

/*
 * Attach to a running M4 remote processor (IPC-only mode)
 *
 * The remote processor is already booted, so there is no need to issue any
 * TI-SCI commands to boot the M4 core. This callback is used only in IPC-only
 * mode.
 */
static int k3_m4_rproc_attach(struct rproc *rproc)
{
	struct k3_m4_rproc *kproc = rproc->priv;
	int ret;

	ret = k3_m4_rproc_ping_mbox(kproc);
	if (ret)
		return ret;

	return 0;
}

/*
 * Detach from a running M4 remote processor (IPC-only mode)
 *
 * This rproc detach callback performs the opposite operation to attach
 * callback, the M4 core is not stopped and will be left to continue to
 * run its booted firmware. This callback is invoked only in IPC-only mode.
 */
static int k3_m4_rproc_detach(struct rproc *rproc)
{
	return 0;
}

static const struct rproc_ops k3_m4_rproc_ops = {
	.prepare = k3_m4_rproc_prepare,
	.unprepare = k3_m4_rproc_unprepare,
	.start = k3_m4_rproc_start,
	.stop = k3_m4_rproc_stop,
	.attach = k3_m4_rproc_attach,
	.detach = k3_m4_rproc_detach,
	.kick = k3_m4_rproc_kick,
	.da_to_va = k3_m4_rproc_da_to_va,
	.get_loaded_rsc_table = k3_m4_get_loaded_rsc_table,
};

static int k3_m4_rproc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct k3_m4_rproc *kproc;
	struct rproc *rproc;
	const char *fw_name;
	bool r_state = false;
	bool p_state = false;
	int ret;

	ret = rproc_of_parse_firmware(dev, 0, &fw_name);
	if (ret)
		return dev_err_probe(dev, ret, "failed to parse firmware-name property\n");

	rproc = devm_rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, fw_name,
				 sizeof(*kproc));
	if (!rproc)
		return -ENOMEM;

	rproc->has_iommu = false;
	rproc->recovery_disabled = true;
	kproc = rproc->priv;
	kproc->dev = dev;
	platform_set_drvdata(pdev, rproc);

	kproc->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
	if (IS_ERR(kproc->ti_sci))
		return dev_err_probe(dev, PTR_ERR(kproc->ti_sci),
				     "failed to get ti-sci handle\n");

	ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id", &kproc->ti_sci_id);
	if (ret)
		return dev_err_probe(dev, ret, "missing 'ti,sci-dev-id' property\n");

	kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
	if (IS_ERR(kproc->reset))
		return dev_err_probe(dev, PTR_ERR(kproc->reset), "failed to get reset\n");

	kproc->tsp = ti_sci_proc_of_get_tsp(dev, kproc->ti_sci);
	if (IS_ERR(kproc->tsp))
		return dev_err_probe(dev, PTR_ERR(kproc->tsp),
				     "failed to construct ti-sci proc control\n");

	ret = ti_sci_proc_request(kproc->tsp);
	if (ret < 0)
		return dev_err_probe(dev, ret, "ti_sci_proc_request failed\n");
	ret = devm_add_action_or_reset(dev, k3_m4_release_tsp, kproc->tsp);
	if (ret)
		return ret;

	ret = k3_m4_rproc_of_get_memories(pdev, kproc);
	if (ret)
		return ret;

	ret = k3_m4_reserved_mem_init(kproc);
	if (ret)
		return dev_err_probe(dev, ret, "reserved memory init failed\n");

	ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id,
					       &r_state, &p_state);
	if (ret)
		return dev_err_probe(dev, ret,
				     "failed to get initial state, mode cannot be determined\n");

	/* configure devices for either remoteproc or IPC-only mode */
	if (p_state) {
		rproc->state = RPROC_DETACHED;
		dev_info(dev, "configured M4F for IPC-only mode\n");
	} else {
		dev_info(dev, "configured M4F for remoteproc mode\n");
	}

	kproc->client.dev = dev;
	kproc->client.tx_done = NULL;
	kproc->client.rx_callback = k3_m4_rproc_mbox_callback;
	kproc->client.tx_block = false;
	kproc->client.knows_txdone = false;
	kproc->mbox = mbox_request_channel(&kproc->client, 0);
	if (IS_ERR(kproc->mbox))
		return dev_err_probe(dev, PTR_ERR(kproc->mbox),
				     "mbox_request_channel failed\n");

	ret = devm_rproc_add(dev, rproc);
	if (ret)
		return dev_err_probe(dev, ret,
				     "failed to register device with remoteproc core\n");

	return 0;
}

static const struct of_device_id k3_m4_of_match[] = {
	{ .compatible = "ti,am64-m4fss", },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, k3_m4_of_match);

static struct platform_driver k3_m4_rproc_driver = {
	.probe	= k3_m4_rproc_probe,
	.driver	= {
		.name = "k3-m4-rproc",
		.of_match_table = k3_m4_of_match,
	},
};
module_platform_driver(k3_m4_rproc_driver);

MODULE_AUTHOR("Hari Nagalla <hnagalla@ti.com>");
MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver");
MODULE_LICENSE("GPL");