summaryrefslogtreecommitdiff
path: root/src/code/type.lisp
blob: 0be22a2448a98f92644622a91dd478a10eb003c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
;;;; This file contains the definition of non-CLASS types (e.g.
;;;; subtypes of interesting BUILT-IN-CLASSes) and the interfaces to
;;;; the type system. Common Lisp type specifiers are parsed into a
;;;; somewhat canonical internal type representation that supports
;;;; type union, intersection, etc.

;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.

(in-package "SB-KERNEL")

(!begin-collecting-cold-init-forms)

;;; ### Remaining incorrectnesses:
;;;
;;; There are all sorts of nasty problems with open bounds on FLOAT
;;; types (and probably FLOAT types in general.)

;;; This condition is signalled whenever we make a UNKNOWN-TYPE so that
;;; compiler warnings can be emitted as appropriate.
(define-condition parse-unknown-type (condition)
  ((specifier :reader parse-unknown-type-specifier :initarg :specifier))
  (:default-initargs
   :specifier (missing-arg)))

;;; This condition is signalled whenever we encounter a type (DEFTYPE,
;;; structure, condition, class) that has been marked as deprecated.
(define-condition parse-deprecated-type (condition)
  ((specifier :reader parse-deprecated-type-specifier :initarg :specifier))
  (:default-initargs
   :specifier (missing-arg)))

;;; For-effect-only variant of CHECK-DEPRECATED-THING for
;;; type-specifiers that descends into compound type-specifiers.
(defun sb-impl::%check-deprecated-type (type-specifier)
  (let ((seen '()))
    ;; KLUDGE: we have to use SPECIFIER-TYPE to sanely traverse
    ;; TYPE-SPECIFIER and detect references to deprecated types. But
    ;; then we may have to drop its cache to get the
    ;; PARSE-DEPRECATED-TYPE condition when TYPE-SPECIFIER is parsed
    ;; again later.
    ;;
    ;; Proper fix would be a
    ;;
    ;;   walk-type function type-specifier
    ;;
    ;; mechanism that could drive VALUES-SPECIFIER-TYPE but also
    ;; things like this function.
    (block nil
      (handler-bind
          ((parse-deprecated-type
             (lambda (condition)
               (let ((type-specifier (parse-deprecated-type-specifier condition)))
                 (aver (symbolp type-specifier))
                 (unless (memq type-specifier seen)
                   (push type-specifier seen)
                   (check-deprecated-thing 'type type-specifier)))))
           ((or error parse-unknown-type)
             (lambda (condition)
               (declare (ignore condition))
               (return))))
        (specifier-type type-specifier)))))

(defun check-slot-type-specifier (specifier slot-name context)
  ;; This signals an error for malformed type specifiers and
  ;; deprecation warnings for deprecated types but does nothing for
  ;; unknown types.
  (with-current-source-form (specifier)
    (handler-case
        (and (let ((ctype (specifier-type specifier)))
               (when (eq ctype *empty-type*)
                 (style-warn "The type of the slot ~s is the empty type NIL" slot-name))
               ctype)
             (sb-impl::%check-deprecated-type specifier))
      (parse-unknown-type (c)
        (when (typep specifier '(cons (eql quote)))
          (signal c)))
      (error (condition)
        (destructuring-bind (operator . class-name) context
          (sb-c:compiler-warn "Invalid :TYPE for slot ~S in ~S ~S: ~A."
                              slot-name operator class-name condition))))))

(defun maybe-reparse-specifier (type)
  (when (unknown-type-p type)
    (let* ((spec (unknown-type-specifier type))
           (name (if (consp spec)
                     (car spec)
                     spec)))
      (when (info :type :kind name)
        (let ((new-type (specifier-type spec)))
          (unless (unknown-type-p new-type)
            new-type))))))

;;; Evil macro.
(defmacro maybe-reparse-specifier! (type)
  (aver (symbolp type))
  (with-unique-names (new-type)
    `(let ((,new-type (maybe-reparse-specifier ,type)))
       (when ,new-type
         (setf ,type ,new-type)
         t))))

;;; These functions are used as method for types which need a complex
;;; subtypep method to handle some superclasses, but cover a subtree
;;; of the type graph (i.e. there is no simple way for any other type
;;; class to be a subtype.) There are always still complex ways,
;;; namely UNION and MEMBER types, so we must give TYPE1's method a
;;; chance to run, instead of immediately returning NIL, T.
(defun delegate-complex-subtypep-arg2 (type1 type2)
  (let ((subtypep-arg1
         (type-class-complex-subtypep-arg1 (type-class type1))))
    (if subtypep-arg1
        (funcall subtypep-arg1 type1 type2)
        (values nil t))))
(defun delegate-complex-intersection2 (type1 type2)
  (let ((method (type-class-complex-intersection2 (type-class type1))))
    (if (and method (not (eq method #'delegate-complex-intersection2)))
        (funcall method type2 type1)
        (hierarchical-intersection2 type1 type2))))

(defun map-type (function ctype)
  (declare (type (or ctype null) ctype)
           (dynamic-extent function))
  (named-let %map ((type ctype))
    (funcall function type)
    (typecase type
      (compound-type
       (mapc #'%map (compound-type-types type)))
      (negation-type (%map (negation-type-type type)))
      (cons-type
       (%map (cons-type-car-type type))
       (%map (cons-type-cdr-type type)))
      (array-type
       (%map (array-type-element-type type)))
      (constant-type
       (%map (constant-type-type type)))
      (args-type
       (mapc #'%map (args-type-required type))
       (mapc #'%map (args-type-optional type))
       (when (args-type-rest type)
         (%map (args-type-rest type)))
       (mapc (lambda (x) (%map (key-info-type x)))
             (args-type-keywords type))
       (when (fun-type-p type)
         (%map (fun-type-returns type))))))
  nil)

(defun replace-hairy-type (type)
  (if (contains-hairy-type-p type)
      (typecase type
        (hairy-type *universal-type*)
        (intersection-type (%type-intersection
                            (mapcar #'replace-hairy-type (intersection-type-types type))))
        (union-type (%type-union
                     (mapcar #'replace-hairy-type (union-type-types type))))
        (negation-type
         (let ((new (replace-hairy-type (negation-type-type type))))
           (if (eq new *universal-type*)
               new
               (type-negation new))))
        (t
         *universal-type*))
      type))

;; Similar to (NOT CONTAINS-UNKNOWN-TYPE-P), but report that (SATISFIES F)
;; is not a testable type unless F is currently bound.
(defun testable-type-p (ctype)
  (unless (contains-hairy-type-p ctype)
    (return-from testable-type-p t))
  (map-type
   (lambda (ctype)
     (typecase ctype
       (unknown-type
        (return-from testable-type-p nil)) ; must precede HAIRY because an unknown is HAIRY
       (hairy-type
        (let ((spec (hairy-type-specifier ctype)))
          ;; Anything other than (SATISFIES ...) is testable
          ;; because there's no reason to suppose that it isn't.
          (unless (or (neq (car spec) 'satisfies) (fboundp (cadr spec)))
            (return-from testable-type-p nil))))))
   ctype)
  t)

;;; This is used by !DEFINE-SUPERCLASSES to define the SUBTYPE-ARG1
;;; method. INFO is a list of conses
;;;   (SUPERCLASS-CLASS . {GUARD-TYPE-SPECIFIER | NIL}).
(defun has-superclasses-complex-subtypep-arg1 (type1 type2 info)
  ;; If TYPE2 might be concealing something related to our class
  ;; hierarchy
  (cond ((type-might-contain-other-types-p type2)
         ;; too confusing, gotta punt
         (values nil nil))
        ((fun-designator-type-p type1)
         (values nil t))
        (t
         ;; ordinary case expected by old CMU CL code, where the taxonomy
         ;; of TYPE2's representation accurately reflects the taxonomy of
         ;; the underlying set
         (values
          ;; FIXME: This old CMU CL code probably deserves a comment
          ;; explaining to us mere mortals how it works...
          (and (sb-xc:typep type2 'classoid)
               (dolist (x info nil)
                 (let ((guard (cdr x)))
                   (when (or (not guard)
                             (csubtypep type1 (if (%instancep guard)
                                                  guard
                                                  (setf (cdr x)
                                                        (specifier-type guard)))))
                     (return
                       (or (eq type2 (car x))
                           (let ((inherits (layout-inherits
                                            (classoid-layout (car x)))))
                             (dotimes (i (length inherits) nil)
                               (when (eq type2 (layout-classoid (svref inherits i)))
                                 (return t))))))))))
          t))))

;;; This function takes a list of specs, each of the form
;;;    (SUPERCLASS-NAME &OPTIONAL GUARD).
;;; Consider one spec (with no guard): any instance of the named
;;; TYPE-CLASS is also a subtype of the named superclass and of any of
;;; its superclasses. If there are multiple specs, then some will have
;;; guards. We choose the first spec whose guard is a supertype of
;;; TYPE1 and use its superclass. In effect, a sequence of guards
;;;    G0, G1, G2
;;; is actually
;;;    G0,(and G1 (not G0)), (and G2 (not (or G0 G1))).
;;;
;;; WHEN controls when the forms are executed.
(defmacro !define-superclasses (type-class-name specs progn-oid)
  (let ((defun-name (symbolicate type-class-name "-COMPLEX-SUBTYPEP-ARG1")))
    `(progn
       (defun ,defun-name (type1 type2)
         (has-superclasses-complex-subtypep-arg1
          type1 type2
          (load-time-value
           (list ,@(mapcar (lambda (spec)
                             (destructuring-bind (super &optional guard) spec
                               `(cons (find-classoid ',super) ',guard)))
                           specs)) #-sb-xc-host t)))
       (,progn-oid
        (let ((type-class (!type-class-or-lose ',type-class-name)))
         (setf (type-class-complex-subtypep-arg1 type-class) #',defun-name)
         (setf (type-class-complex-subtypep-arg2 type-class)
               #'delegate-complex-subtypep-arg2)
         (setf (type-class-complex-intersection2 type-class)
               #'delegate-complex-intersection2))))))

;;;; FUNCTION and VALUES types
;;;;
;;;; Pretty much all of the general type operations are illegal on
;;;; VALUES types, since we can't discriminate using them, do
;;;; SUBTYPEP, etc. FUNCTION types are acceptable to the normal type
;;;; operations, but are generally considered to be equivalent to
;;;; FUNCTION. These really aren't true types in any type theoretic
;;;; sense, but we still parse them into CTYPE structures for two
;;;; reasons:

;;;; -- Parsing and unparsing work the same way, and indeed we can't
;;;;    tell whether a type is a function or values type without
;;;;    parsing it.
;;;; -- Many of the places that can be annotated with real types can
;;;;    also be annotated with function or values types.

(define-type-class values :enumerable nil :might-contain-other-types nil)

(defun make-values-type (required &optional optional rest)
  (multiple-value-bind (required optional rest)
      (canonicalize-args-type-args required optional rest)
    (cond ((and (null required) (null optional) (eq rest *universal-type*))
           *wild-type*)
          ((memq *empty-type* required)
           *empty-type*)
          (t
           (let ((required (intern-ctype-list required))
                 (optional (intern-ctype-list optional)))
             (new-ctype values-type
                        (lambda (x)
                          (logior (type-list-flags (args-type-required x))
                                  (type-list-flags (args-type-optional x))
                                  (acond ((args-type-rest x) (type-flags it))
                                         (t 0))))
                        required optional rest))))))

(define-type-method (values :simple-subtypep :complex-subtypep-arg1)
                     (type1 type2)
  (declare (ignore type2))
  ;; FIXME: should be TYPE-ERROR, here and in next method
  (error "SUBTYPEP is illegal on this type:~%  ~S" (type-specifier type1)))

(define-type-method (values :complex-subtypep-arg2)
                     (type1 type2)
  (declare (ignore type1))
  (error "SUBTYPEP is illegal on this type:~%  ~S" (type-specifier type2)))

(define-type-method (values :negate) (type)
  (error "NOT VALUES too confusing on ~S" (type-specifier type)))

(defun type-unparse (flags thing)
  (if (listp thing)
      (mapcar (lambda (x) (funcall (type-class-unparse (type-class x)) flags x))
              thing)
      (funcall (type-class-unparse (type-class thing)) flags thing)))

;;; Return the lambda-list-like type specification corresponding
;;; to an ARGS-TYPE.
(defun unparse-args-types (flags type)
  (collect ((result))
    (when (args-type-optional type)
      (result '&optional)
      (dolist (arg (args-type-optional type))
        (result (type-unparse flags arg))))

    (when (args-type-rest type)
      (result '&rest)
      (result (type-unparse flags (args-type-rest type))))

    (when (args-type-keyp type)
      (result '&key)
      (dolist (key (args-type-keywords type))
        (result (list (key-info-name key)
                      (type-unparse flags (key-info-type key))))))

    (when (args-type-allowp type)
      (result '&allow-other-keys))

    (nconc (type-unparse flags (args-type-required type))
           (result))))

(define-type-method (values :unparse) (flags type)
  (cons 'values
        (let ((unparsed (unparse-args-types flags type)))
          (if (or (values-type-optional type)
                  (values-type-rest type))
              unparsed
              (nconc unparsed '(&optional))))))

;;; Hmm, according to the comments at DEFUN-CACHED, it may be inefficient
;;; to proclaim the type of a cached function, because it forces checks to
;;; be inserted on every return from the function, even though we would only
;;; need to check when inserting to the cache.
#+sb-xc-host
(declaim (ftype (sfunction (ctype ctype) (values t t)) type=))

;;; Return true if LIST1 and LIST2 have the same elements in the same
;;; positions according to TYPE=. We return NIL, NIL if there is an
;;; uncertain comparison.
(defun type=-list (list1 list2)
  (declare (list list1 list2))
  (do ((types1 list1 (cdr types1))
       (types2 list2 (cdr types2)))
      ((or (null types1) (null types2))
       (if (or types1 types2)
           (values nil t)
           (values t t)))
    (multiple-value-bind (val win)
        (type= (first types1) (first types2))
      (unless win
        (return (values nil nil)))
      (unless val
        (return (values nil t))))))

(define-type-method (values :simple-=) (type1 type2)
  (type=-args type1 type2))

(define-type-class function :enumerable nil :might-contain-other-types nil)

(define-type-method (function :negate) (type) (make-negation-type type))

(define-type-method (function :unparse) (flags type)
  (let ((name (if (fun-designator-type-p type)
                  'function-designator
                  'function)))
    (cond ((logtest flags +unparse-fun-type-simplify+)
           name)
          (t
           (list name
                 (if (fun-type-wild-args type)
                     '*
                     (unparse-args-types flags type))
                 (type-unparse flags (fun-type-returns type)))))))

;;; The meaning of this is a little confused. On the one hand, all
;;; function objects are represented the same way regardless of the
;;; arglists and return values, and apps don't get to ask things like
;;; (TYPEP #'FOO (FUNCTION (FIXNUM) *)) in any meaningful way. On the
;;; other hand, Python wants to reason about function types. So...
(define-type-method (function :simple-subtypep) (type1 type2)
  (cond ((and (fun-designator-type-p type1)
              (not (fun-designator-type-p type2)))
         (values nil t))
        ((type= type1 type2)
         ;; Since the following doesn't handle &rest or &key at least
         ;; pick out equal types.
         (values t t))
        (t
         (flet ((fun-type-simple-p (type)
                  (not (or (fun-type-rest type)
                           (fun-type-keyp type))))
                (every-csubtypep (types1 types2)
                  (loop
                    for a1 in types1
                    for a2 in types2
                    do (multiple-value-bind (res sure-p)
                           (csubtypep a1 a2)
                         (unless res (return (values res sure-p))))
                    finally (return (values t t)))))
           (and/type (values-subtypep (fun-type-returns type1)
                                      (fun-type-returns type2))
                     (cond ((fun-type-wild-args type2) (values t t))
                           ((fun-type-wild-args type1)
                            (cond ((fun-type-keyp type2) (values nil nil))
                                  ((not (fun-type-rest type2)) (values nil t))
                                  ((not (null (fun-type-required type2)))
                                   (values nil t))
                                  (t (and/type (type= *universal-type*
                                                      (fun-type-rest type2))
                                               (every/type #'type=
                                                           *universal-type*
                                                           (fun-type-optional
                                                            type2))))))
                           ((not (and (fun-type-simple-p type1)
                                      (fun-type-simple-p type2)))
                            (values nil nil))
                           (t (multiple-value-bind (min1 max1) (fun-type-nargs type1)
                                (multiple-value-bind (min2 max2) (fun-type-nargs type2)
                                  (cond ((or (> max1 max2) (< min1 min2))
                                         (values nil t))
                                        ((and (= min1 min2) (= max1 max2))
                                         (and/type (every-csubtypep
                                                    (fun-type-required type1)
                                                    (fun-type-required type2))
                                                   (every-csubtypep
                                                    (fun-type-optional type1)
                                                    (fun-type-optional type2))))
                                        (t (every-csubtypep
                                            (concatenate 'list
                                                         (fun-type-required type1)
                                                         (fun-type-optional type1))
                                            (concatenate 'list
                                                         (fun-type-required type2)
                                                         (fun-type-optional type2))))))))))))))

(!define-superclasses function ((function)) !cold-init-forms)

;;; The union or intersection of two FUNCTION types is FUNCTION.
(define-type-method (function :simple-union2) (type1 type2)
  (if (or (fun-designator-type-p type1)
          (fun-designator-type-p type2))
      (specifier-type 'function-designator)
      (specifier-type 'function)))

(define-type-method (function :simple-intersection2) (type1 type2)
  (let ((ftype (specifier-type 'function)))
    (cond ((eq type1 ftype) type2)
          ((eq type2 ftype) type1)
          (t (let ((rtype (values-type-intersection (fun-type-returns type1)
                                                    (fun-type-returns type2)))
                   (designator
                     (and (fun-designator-type-p type1)
                          (fun-designator-type-p type2))))
               (flet ((change-returns (ftype rtype)
                        (declare (type fun-type ftype) (type ctype rtype))
                        (make-fun-type :required (fun-type-required ftype)
                                       :optional (fun-type-optional ftype)
                                       :keyp (fun-type-keyp ftype)
                                       :rest (fun-type-rest ftype)
                                       :keywords (fun-type-keywords ftype)
                                       :allowp (fun-type-allowp ftype)
                                       :returns rtype
                                       :designator designator)))
                 (cond
                   ((fun-type-wild-args type1)
                    (if (fun-type-wild-args type2)
                        (make-fun-type :wild-args t
                                       :returns rtype
                                       :designator designator)
                        (change-returns type2 rtype)))
                   ((fun-type-wild-args type2)
                    (change-returns type1 rtype))
                   (t (multiple-value-bind (req opt rest)
                          (args-type-op type1 type2 #'type-intersection #'max)
                        (make-fun-type :required req
                                       :optional opt
                                       :rest rest
                                       ;; FIXME: :keys
                                       :allowp (and (fun-type-allowp type1)
                                                    (fun-type-allowp type2))
                                       :returns rtype
                                       :designator designator))))))))))

;;; The union or intersection of a subclass of FUNCTION with a
;;; FUNCTION type is somewhat complicated.
(define-type-method (function :complex-intersection2) (type1 type2)
  (cond
    ((and (fun-designator-type-p type2)
          (or (csubtypep type1 (specifier-type 'symbol))
              (csubtypep type1 (specifier-type 'function))))
     type1)
    ((type= type1 (specifier-type 'function)) type2)
    ((csubtypep type1 (specifier-type 'function)) nil)
    (t :call-other-method)))
(define-type-method (function :complex-union2) (type1 type2)
  (declare (ignore type2))
  ;; TYPE2 is a FUNCTION type.  If TYPE1 is a classoid type naming
  ;; FUNCTION, then it is the union of the two; otherwise, there is no
  ;; special union.
  (cond
    ((type= type1 (specifier-type 'function)) type1)
    (t nil)))

(define-type-method (function :simple-=) (type1 type2)
  (if (or (and (fun-designator-type-p type1)
               (not (fun-designator-type-p type2)))
          (and (not (fun-designator-type-p type1))
               (fun-designator-type-p type2)))
      (values nil t)
      (macrolet ((compare (comparator field)
                   (let ((reader (symbolicate '#:fun-type- field)))
                     `(,comparator (,reader type1) (,reader type2)))))
        (and/type (compare type= returns)
                  (cond ((neq (fun-type-wild-args type1) (fun-type-wild-args type2))
                         (values nil t))
                        ((eq (fun-type-wild-args type1) t)
                         (values t t))
                        (t (type=-args type1 type2)))))))

(defun make-fun-type (&key required optional rest
                           keyp keywords allowp
                           wild-args returns
                           designator)
  (let ((rest (if (eq rest *empty-type*) nil rest))
        (required (intern-ctype-list required))
        (optional (intern-ctype-list optional)))
    (flet ((fun-type-flags (x)
             (logior (type-list-flags (fun-type-required x))
                     (type-list-flags (fun-type-optional x))
                     (acond ((fun-type-rest x) (type-flags it))
                            (t 0))
                     (key-info-list-flags (fun-type-keywords x))
                     (type-flags (fun-type-returns x)))))
      (macrolet ((new (metatype)
                   `(new-ctype ,metatype #'fun-type-flags
                               required optional rest keyp keywords
                               allowp wild-args returns)))
        (if designator
            (new fun-designator-type)
            (new fun-type))))))

;; This seems to be used only by cltl2, and within 'cross-type',
;; where it is never used, which makes sense, since pretty much we
;; never want this object, but instead the classoid FUNCTION
;; if we know nothing about a function's signature.
;; Maybe this should not exist unless cltl2 is loaded???
(define-load-time-global *universal-fun-type*
  (make-fun-type :wild-args t :returns *wild-type*))

(define-type-class constant :inherits values)

(define-type-method (constant :negate) (type)
  (error "NOT CONSTANT too confusing on ~S" (type-specifier type)))

(define-type-method (constant :unparse) (flags type)
  `(constant-arg ,(type-unparse flags (constant-type-type type))))

(define-type-method (constant :simple-=) (type1 type2)
  (type= (constant-type-type type1) (constant-type-type type2)))

(def-type-translator constant-arg ((:context context) type)
  (let ((parse (single-value-specifier-type type context)))
    (new-ctype constant-type (type-flags parse) parse)))

(defun canonicalize-args-type-args (required optional rest &optional keyp)
  (when (eq rest *empty-type*)
    ;; or vice-versa?
    (setq rest nil))
  (loop with last-not-rest = nil
        for i from 0
        for opt in optional
        do (cond ((eq opt *empty-type*)
                  (return (values required (subseq optional 0 i) rest)))
                 ((and (not keyp) (neq opt rest))
                  (setq last-not-rest i)))
        finally (return (values required
                                (cond (keyp
                                       optional)
                                      (last-not-rest
                                       (subseq optional 0 (1+ last-not-rest))))
                                rest))))

;;; CONTEXT is the cookie passed down from the outermost surrounding call
;;; of BASIC-PARSE-TYPE. INNER-CONTEXT-KIND is an indicator of whether
;;; we are currently parsing a FUNCTION or a VALUES compound type specifier.
;;; If the entire LAMBDA-LISTY-THING is *, we do not call this function at all.
;;; If an element of it is *, that constitutes an error, as is clear
;;; for VALUES: "The symbol * may not be among the value-types."
;;;  http://www.lispworks.com/documentation/HyperSpec/Body/t_values.htm
;;; and the FUNCTION compound type, for which the grammar is:
;;;   function [arg-typespec [value-typespec]]
;;;   arg-typespec::= (typespec* [&optional typespec*] [&rest typespec];[&key (keyword typespec)*])
;;;   typespec --- a type specifier.
;;; where the glossary says: "type specifier: n. an expression that denotes a type."
;;; which of course * does not denote, and is made all the more clear by the fact
;;; that the AND, OR, and NOT combinators explicitly preclude * as an element.
(defun parse-args-types (context lambda-listy-thing inner-context-kind)
  (multiple-value-bind (llks required optional rest keys)
      (parse-lambda-list
       lambda-listy-thing
       :context inner-context-kind
       :accept (ecase inner-context-kind
                 (:values-type (lambda-list-keyword-mask '(&optional &rest)))
                 (:function-type (lambda-list-keyword-mask
                                  '(&optional &rest &key &allow-other-keys))))
       :silent t)
   (labels ((parse-list (list) (mapcar #'parse-one list))
            (parse-one (x)
              (specifier-type x context
                              (case inner-context-kind
                                (:function-type 'function)
                                (t 'values)))))
    (let ((required (parse-list required))
          (optional (parse-list optional))
          (rest (when rest (parse-one (car rest))))
          (keywords
           (collect ((key-info))
             (dolist (key keys)
               (unless (proper-list-of-length-p key 2)
                 (error "Keyword type description is not a two-list: ~S." key))
               (let ((kwd (first key)))
                 (when (find kwd (key-info) :key #'key-info-name)
                   (error (sb-format:tokens
                           "~@<repeated keyword ~S in lambda list: ~2I~_~
                            ~/sb-impl:print-lambda-list/~:>")
                          kwd lambda-listy-thing))
                 (key-info
                  (make-key-info
                   ;; MAKE-KEY-INFO will complain if KWD is not a symbol.
                   ;; That's good enough - we don't need an extra check here.
                   kwd
                   (single-value-specifier-type (second key) context)))))
             (intern-key-infos (key-info)))))
      (multiple-value-bind (required optional rest)
          (canonicalize-args-type-args required optional rest
                                       (ll-kwds-keyp llks))
        (values llks required optional rest keywords))))))

(defun translate-fun-type (context args result
                           &key designator)
  (let ((result (coerce-to-values (basic-parse-typespec result context))))
    (cond ((neq args '*)
           (multiple-value-bind (llks required optional rest keywords)
               (parse-args-types context args :function-type)
             (if (and (null required)
                      (null optional)
                      (eq rest *universal-type*)
                      (not (ll-kwds-keyp llks)))
                 (if (eq result *wild-type*)
                     (specifier-type 'function)
                     (make-fun-type :wild-args t :returns result
                                    :designator designator))
                 (make-fun-type :required required
                                :optional optional
                                :rest rest
                                :keyp (ll-kwds-keyp llks)
                                :keywords keywords
                                :allowp (ll-kwds-allowp llks)
                                :returns result
                                :designator designator))))
          ((eq result *wild-type*)
           (if designator
               ;; Do not put 'FUNCTION-DESIGNATOR here!
               ;; (Since this is the parser for FUNCTION-DESIGNATOR)
               (specifier-type '(or function symbol))
               (specifier-type 'function)))
          (t
           (make-fun-type :wild-args t :returns result
                          :designator designator)))))

(def-type-translator function ((:context context)
                                &optional (args '*) (result '*))
  (translate-fun-type context args result))

(def-type-translator function-designator ((:context context)
                                &optional (args '*) (result '*))
  (translate-fun-type context args result :designator t))

(def-type-translator values :list ((:context context) &rest values)
  ;; comment from CMUCL:
  ;; "Signal an error if the spec has &KEY or &ALLOW-OTHER-KEYS.
  ;;  Actually, CLHS lists &ALLOW-OTHER-KEYS without listing &KEYS,
  ;;  but keys clearly don't make any sense."
  (multiple-value-bind (llks required optional rest)
      (parse-args-types context values :values-type)
    (if (plusp llks)
        (make-values-type required optional rest)
        (make-short-values-type required))))

;;;; VALUES types interfaces
;;;;
;;;; We provide a few special operations that can be meaningfully used
;;;; on VALUES types (as well as on any other type).

;;; Return the minimum number of values possibly matching VALUES type
;;; TYPE.
(defun values-type-min-value-count (type)
  (etypecase type
    (named-type
     (ecase (named-type-name type)
       ((t *) 0)
       ((nil) 0)))
    (values-type
     (length (values-type-required type)))))

;;; Return the maximum number of values possibly matching VALUES type
;;; TYPE.
(defun values-type-max-value-count (type)
  (etypecase type
    (named-type
     (ecase (named-type-name type)
       ((t *) call-arguments-limit)
       ((nil) 0)))
    (values-type
     (if (values-type-rest type)
         call-arguments-limit
         (+ (length (values-type-optional type))
            (length (values-type-required type)))))))

(defun values-type-may-be-single-value-p (type)
  (<= (values-type-min-value-count type)
      1
      (values-type-max-value-count type)))

;;; VALUES type with a single value.
(defun type-single-value-p (type)
  (and (values-type-p type)
       (not (values-type-rest type))
       (null (values-type-optional type))
       (singleton-p (values-type-required type))))

;;; Return the type of the first value indicated by TYPE. This is used
;;; by people who don't want to have to deal with VALUES types.
(defun single-value-type (type)
  (declare (type ctype type))
  (cond ((eq type *wild-type*)
         *universal-type*)
        ((eq type *empty-type*)
         *empty-type*)
        ((not (values-type-p type))
         type)
        ((car (args-type-required type)))
        (t (type-union (specifier-type 'null)
                       (or (car (args-type-optional type))
                           (args-type-rest type)
                           (specifier-type 'null))))))

;;; Return the minimum number of arguments that a function can be
;;; called with, and the maximum number or NIL. If not a function
;;; type, return NIL, NIL.
(defun fun-type-nargs (type)
  (declare (type ctype type))
  (if (and (fun-type-p type) (not (fun-type-wild-args type)))
      (let ((fixed (length (args-type-required type))))
        (if (or (args-type-rest type)
                (args-type-keyp type)
                (args-type-allowp type))
            (values fixed nil)
            (values fixed (+ fixed (length (args-type-optional type))))))
      (values nil nil)))

;;; Determine whether TYPE corresponds to a definite number of values.
;;; The first value is a list of the types for each value, and the
;;; second value is the number of values. If the number of values is
;;; not fixed, then return NIL and :UNKNOWN.
(defun values-types (type)
  (declare (type ctype type))
  (cond ((or (eq type *wild-type*) (eq type *empty-type*))
         (values nil :unknown))
        ((or (args-type-optional type)
             (args-type-rest type))
         (values nil :unknown))
        (t
         (let ((req (args-type-required type)))
           (values req (length req))))))

;;; Return two values:
;;; 1. A list of all the positional (fixed and optional) types.
;;; 2. The &REST type (if any). If no &REST, then the DEFAULT-TYPE.
(defun values-type-types (type &optional (default-type *empty-type*))
  (declare (type ctype type))
  (if (eq type *wild-type*)
      (values nil *universal-type*)
      (values (append (args-type-required type)
                      (args-type-optional type))
              (or (args-type-rest type)
                  default-type))))

;;; types of values in (the <type> (values o_1 ... o_n))
(defun values-type-out (type count)
  (declare (type ctype type) (type unsigned-byte count))
  (if (eq type *wild-type*)
      (make-list count :initial-element *universal-type*)
      (collect ((res))
        (flet ((process-types (types)
                 (loop for type in types
                       while (plusp count)
                       do (decf count)
                       do (res type))))
          (process-types (values-type-required type))
          (process-types (values-type-optional type))
          (let ((rest (values-type-rest type)))
            (when rest
              (loop repeat count
                    do (res rest)))))
        (res))))

;;; types of variable in (m-v-bind (v_1 ... v_n) (the <type> ...
(defun values-type-in (type count)
  (declare (type ctype type) (type unsigned-byte count))
  (if (eq type *wild-type*)
      (make-list count :initial-element *universal-type*)
      (collect ((res))
        (let ((null-type (specifier-type 'null)))
          (loop for type in (values-type-required type)
             while (plusp count)
             do (decf count)
             do (res type))
          (loop for type in (values-type-optional type)
             while (plusp count)
             do (decf count)
             do (res (type-union type null-type)))
          (when (plusp count)
            (loop with rest = (acond ((values-type-rest type)
                                      (type-union it null-type))
                                     (t null-type))
               repeat count
               do (res rest))))
        (res))))

;;; Return a list of OPERATION applied to the types in TYPES1 and
;;; TYPES2, padding with REST2 as needed. TYPES1 must not be shorter
;;; than TYPES2. The second value is T if OPERATION always returned a
;;; true second value.
(defun fixed-values-op (types1 types2 rest2 operation)
  (declare (list types1 types2) (type ctype rest2) (type function operation))
  (let ((exact t))
    (values (mapcar (lambda (t1 t2)
                      (multiple-value-bind (res win)
                          (funcall operation t1 t2)
                        (unless win
                          (setq exact nil))
                        res))
                    types1
                    (append types2
                            (make-list (- (length types1) (length types2))
                                       :initial-element rest2)))
            exact)))

;;; If TYPE isn't a values type, then make it into one.
(defun-cached (%coerce-to-values :hash-bits 8 :hash-function #'type-%bits)
    ((type eq))
  (cond ((multiple-value-bind (res sure)
             (csubtypep (specifier-type 'null) type)
           (and (not res) sure))
         ;; FIXME: What should we do with (NOT SURE)?
         (make-values-type (list type) nil *universal-type*))
        (t
         (make-values-type nil (list type) *universal-type*))))

(defun coerce-to-values (type)
  (declare (type ctype type))
  (cond ((or (eq type *universal-type*)
             (eq type *wild-type*))
         *wild-type*)
        ((values-type-p type)
         type)
        (t (%coerce-to-values type))))

;;; Return type, corresponding to ANSI short form of VALUES type
;;; specifier.
(defun make-short-values-type (types)
  (declare (list types))
  (let ((last-required (position-if
                        (lambda (type)
                          (not/type (csubtypep (specifier-type 'null) type)))
                        types
                        :from-end t)))
    (if last-required
        (make-values-type (subseq types 0 (1+ last-required))
                          (subseq types (1+ last-required))
                          *universal-type*)
        (make-values-type nil types *universal-type*))))

(defun make-single-value-type (type)
  (make-values-type (list type)))

;;; Do the specified OPERATION on TYPE1 and TYPE2, which may be any
;;; type, including VALUES types. With VALUES types such as:
;;;    (VALUES a0 a1)
;;;    (VALUES b0 b1)
;;; we compute the more useful result
;;;    (VALUES (<operation> a0 b0) (<operation> a1 b1))
;;; rather than the precise result
;;;    (<operation> (values a0 a1) (values b0 b1))
;;; This has the virtue of always keeping the VALUES type specifier
;;; outermost, and retains all of the information that is really
;;; useful for static type analysis. We want to know what is always
;;; true of each value independently. It is worthless to know that if
;;; the first value is B0 then the second will be B1.
;;;
;;; If the VALUES count signatures differ, then we produce a result with
;;; the required VALUE count chosen by NREQ when applied to the number
;;; of required values in TYPE1 and TYPE2. Any &KEY values become
;;; &REST T (anyone who uses keyword values deserves to lose.)
;;;
;;; The second value is true if the result is definitely empty or if
;;; OPERATION returned true as its second value each time we called
;;; it. Since we approximate the intersection of VALUES types, the
;;; second value being true doesn't mean the result is exact.
(defun args-type-op (type1 type2 operation nreq)
  (declare (type ctype type1 type2)
           (type function operation nreq))
  (when (eq type1 type2)
    (values type1 t))
  (multiple-value-bind (types1 rest1)
      (values-type-types type1)
    (multiple-value-bind (types2 rest2)
        (values-type-types type2)
      (multiple-value-bind (rest rest-exact)
          (funcall operation rest1 rest2)
        (multiple-value-bind (res res-exact)
            (if (< (length types1) (length types2))
                (fixed-values-op types2 types1 rest1 operation)
                (fixed-values-op types1 types2 rest2 operation))
          (let* ((req (funcall nreq
                               (length (args-type-required type1))
                               (length (args-type-required type2))))
                 (required (subseq res 0 req))
                 (opt (subseq res req)))
            (values required opt rest
                    (and rest-exact res-exact))))))))

(defun values-type-op (type1 type2 operation nreq)
  (multiple-value-bind (required optional rest exactp)
      (args-type-op type1 type2 operation nreq)
    (values (make-values-type required optional rest)
            exactp)))

(defun compare-key-args (type1 type2)
  (let ((keys1 (args-type-keywords type1))
        (keys2 (args-type-keywords type2)))
    (and (= (length keys1) (length keys2))
         (eq (args-type-allowp type1)
             (args-type-allowp type2))
         (loop for key1 in keys1
               for match = (find (key-info-name key1)
                                 keys2 :key #'key-info-name)
               always (and match
                           (type= (key-info-type key1)
                                  (key-info-type match)))))))

(defun type=-args (type1 type2)
  (macrolet ((compare (comparator field)
               (let ((reader (symbolicate '#:args-type- field)))
                 `(,comparator (,reader type1) (,reader type2)))))
    (and/type
     (cond ((null (args-type-rest type1))
            (values (null (args-type-rest type2)) t))
           ((null (args-type-rest type2))
            (values nil t))
           (t
            (compare type= rest)))
     (and/type (and/type (compare type=-list required)
                         (compare type=-list optional))
               (if (or (args-type-keyp type1) (args-type-keyp type2))
                   (values (compare-key-args type1 type2) t)
                   (values t t))))))

;;; Do a union or intersection operation on types that might be values
;;; types. The result is optimized for utility rather than exactness,
;;; but it is guaranteed that it will be no smaller (more restrictive)
;;; than the precise result.
;;;
;;; The return convention seems to be analogous to
;;; TYPES-EQUAL-OR-INTERSECT. -- WHN 19990910.
(defun-cached (values-type-union :hash-function #'hash-ctype-pair
                                 :hash-bits 8)
    ((type1 eq) (type2 eq))
  (declare (type ctype type1 type2))
  (cond ((or (eq type1 *wild-type*) (eq type2 *wild-type*)) *wild-type*)
        ((eq type1 *empty-type*) type2)
        ((eq type2 *empty-type*) type1)
        (t
         (values (values-type-op type1 type2 #'type-union #'min)))))

(defun-cached (values-type-intersection :hash-function #'hash-ctype-pair
                                        :hash-bits 8)
    ((type1 eq) (type2 eq))
  (declare (type ctype type1 type2))
  (cond ((eq type1 *wild-type*)
         (coerce-to-values type2))
        ((or (eq type2 *wild-type*) (eq type2 *universal-type*))
         type1)
        ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
         *empty-type*)
        ((and (not (values-type-p type2))
              (values-type-required type1))
         (let ((req1 (values-type-required type1)))
           (make-values-type (cons (type-intersection (first req1) type2) (rest req1))
                             (values-type-optional type1)
                             (values-type-rest type1))))
        (t
         (values (values-type-op type1 (coerce-to-values type2)
                                 #'type-intersection
                                 #'max)))))

;;; This is like TYPES-EQUAL-OR-INTERSECT, except that it sort of
;;; works on VALUES types. Note that due to the semantics of
;;; VALUES-TYPE-INTERSECTION, this might return (VALUES T T) when
;;; there isn't really any intersection.
(defun values-types-equal-or-intersect (type1 type2)
  (cond ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
         (values t t))
        ((or (eq type1 *wild-type*) (eq type2 *wild-type*))
         (values t t))
        (t
         (let ((res (values-type-intersection type1 type2)))
           (values (not (eq res *empty-type*))
                   t)))))

;;; a SUBTYPEP-like operation that can be used on any types, including
;;; VALUES types
(defun-cached (values-subtypep :hash-function #'hash-ctype-pair
                               :hash-bits 8
                               :values 2)
    ((type1 eq) (type2 eq))
  (declare (type ctype type1 type2))
  (cond ((or (eq type2 *wild-type*) (eq type2 *universal-type*)
             (eq type1 *empty-type*))
         (values t t))
        ((eq type1 *wild-type*)
         (values (eq type2 *wild-type*) t))
        ((or (eq type2 *empty-type*)
             (not (values-types-equal-or-intersect type1 type2)))
         (values nil t))
        ((and (not (values-type-p type2))
              (values-type-required type1))
         (csubtypep (first (values-type-required type1))
                    type2))
        (t (setq type2 (coerce-to-values type2))
           (multiple-value-bind (types1 rest1) (values-type-types type1)
             (multiple-value-bind (types2 rest2) (values-type-types type2)
               (cond ((< (length (values-type-required type1))
                         (length (values-type-required type2)))
                      (values nil t))
                     ((< (length types1) (length types2))
                      (values nil nil))
                     (t
                      (do ((t1 types1 (rest t1))
                           (t2 types2 (rest t2)))
                          ((null t2)
                           (loop named loop
                                 for type in t1
                                 do (multiple-value-bind (res win)
                                        (csubtypep type rest2)
                                      (unless win
                                        (return (values nil nil)))
                                      (unless res
                                        (return (values nil t)))))
                           (csubtypep rest1 rest2))
                        (multiple-value-bind (res win-p)
                            (csubtypep (first t1) (first t2))
                          (unless win-p
                            (return (values nil nil)))
                          (unless res
                            (return (values nil t))))))))))))

;;;; type method interfaces

;;; The special-case for CSUBTYPEP on fixnum ranges improved a situation where the compiler
;;; performed nearly 2 billion calls to CSUBTYPEP, all different. The flat profile said this
;;; accounted for 21% of compilation time (which was 1:45 minutes:seconds on this one file)
;;;            Self        Total        Cumul
;;;   Nr  Count     %  Count     %  Count     %    Calls  Function
;;; ------------------------------------------------------------------------
;;;    1   5397  21.3   9064  35.7   5397  21.3        -  SB-KERNEL:CSUBTYPEP
;;;    2   3419  13.5  24781  97.7   8816  34.8        -  SB-KERNEL::TYPE-UNION2
;;;    3   2382   9.4   2382   9.4  11198  44.1        -  SB-KERNEL::NUMERIC-TYPES-ADJACENT
;;;    4   2169   8.6   6870  27.1  13367  52.7        -  SB-KERNEL::NUMERIC-TYPES-INTERSECT
;;;    5   1931   7.6   3193  12.6  15298  60.3        -  <=
;;;    6   1883   7.4   2861  11.3  17181  67.7        -  >=
;;;    7   1349   5.3  13004  51.3  18530  73.1        -  SB-KERNEL::NUMBER-SIMPLE-UNION2-TYPE-METHOD
;;;    8   1287   5.1   1287   5.1  19817  78.1        -  SB-KERNEL::OK-TO-MEMOIZE-P
;;;    9   1261   5.0   1261   5.0  21078  83.1        -  SB-KERNEL:TWO-ARG-<=
;;;   10   1000   3.9   1000   3.9  22078  87.0        -  SB-KERNEL:TWO-ARG->=
;;;   11    808   3.2   7084  27.9  22886  90.2        -  SB-KERNEL::%TYPE-UNION2
;;;   12    740   2.9   1893   7.5  23626  93.1        -  SB-KERNEL::NUMBER-SIMPLE-SUBTYPEP-TYPE-METHOD
;;;   13    379   1.5    712   2.8  24005  94.6        -  SB-IMPL::ALLOC-HASH-CACHE-LINE/4

;;; After adding the special-case, total compilation time decreased to 1:12
;;; and CSUBTYPEP dropped out of 1st-place for the worst function.
;;;   Nr  Count     %  Count     %  Count     %    Calls  Function
;;; ------------------------------------------------------------------------
;;;    1   2649  14.6  17692  97.3   2649  14.6        -  SB-KERNEL::TYPE-UNION2
;;;    2   2539  14.0   2642  14.5   5188  28.5        -  SB-KERNEL:CSUBTYPEP
;;;    3   2422  13.3   2422  13.3   7610  41.9        -  SB-KERNEL::NUMERIC-TYPES-ADJACENT
;;;    4   2240  12.3   6978  38.4   9850  54.2        -  SB-KERNEL::NUMERIC-TYPES-INTERSECT
;;;    5   1605   8.8   2671  14.7  11455  63.0        -  <=
;;;    6   1473   8.1  12776  70.3  12928  71.1        -  SB-KERNEL::NUMBER-SIMPLE-UNION2-TYPE-METHOD
;;;    7   1446   8.0   2215  12.2  14374  79.1        -  >=
;;;    8   1028   5.7   1028   5.7  15402  84.7        -  SB-KERNEL:TWO-ARG-<=
;;;    9    806   4.4    806   4.4  16208  89.1        -  SB-KERNEL:TWO-ARG->=
;;;   10    579   3.2   6623  36.4  16787  92.3        -  SB-KERNEL::%TYPE-UNION2
;;;   11    372   2.0    372   2.0  17159  94.4        -  SB-KERNEL::OK-TO-MEMOIZE-P
;;;   12    164   0.9    183   1.0  17323  95.3        -  SB-IMPL::ALLOC-HASH-CACHE-LINE/3
;;;   13    135   0.7  17910  98.5  17458  96.0        -  SB-KERNEL::SIMPLIFY-UNIONS

;;; It's unfortunate that we have to pick off the special case in the "generic dispatch"
;;; of CSUBTYPEP, because it should go into the simple-subtypep path for numerics, but
;;; aside from doing fixnum math, SB-IMPL::ALLOC-HASH-CACHE-LINE/4 (two args, two results)
;;; showed up high in the profile but afterwards it is down to spot number 26.
;;; So we definitely want the memoization NOT to occur, and there's no way to to that without
;;; either delegating memoization to all impl methods, or else having the methods return
;;; a flag saying whether to memoize. The generic piece could abide by the flag and strip
;;; it out of its return values.

(defmacro both-fixnum-p (a b)
  #+(and (or arm64 x86-64) (not sb-xc-host)) ; One conditional branch is better than two
  (return-from both-fixnum-p ; same as BOTH-FIXNUM-P in assembly/x86-64/arith
    `(evenp (logior (get-lisp-obj-address ,a) (get-lisp-obj-address ,b))))
  `(and (fixnump ,a) (fixnump ,b)))

;;; like SUBTYPEP, only works on CTYPE structures
(defun-cached (csubtypep :hash-function #'hash-ctype-pair
                         :hash-bits 10
                         :memoizer memoize
                         :values 2)
              ((type1 eq) (type2 eq))
  (declare (type ctype type1 type2))
  (cond ((or (eq type1 type2)
             (eq type1 *empty-type*)
             (eq type2 *universal-type*))
         (values t t))
        #+nil
        ((eq type1 *universal-type*)
         (values nil t))
        (t
         (when (and (= (type-class-id type1) #.(type-class-name->id 'number))
                    (= (type-class-id type2) #.(type-class-name->id 'number))
                    (eq (numeric-type-aspects (truly-the numeric-type type1))
                        (numeric-type-aspects (truly-the numeric-type type2))))
           (let ((l1 (numeric-type-low type1)) (h1 (numeric-type-high type1)))
             (when (both-fixnum-p l1 h1)
               (let ((l2 (numeric-type-low type2)) (h2 (numeric-type-high type2)))
                 (when (and (both-fixnum-p l2 h2)
                            ;; Is this final check tautologically true now?
                            ;; (Complex can't have bounds, and real bounds would be floats.)
                            (eq (numeric-type-aspects type1)
                                (load-time-value
                                 (aref *numeric-aspects-v*
                                       (!compute-numtype-aspect-id :real 'integer nil)))))
                   (return-from csubtypep
                     (values (and (>= (truly-the sb-xc:fixnum l1) (truly-the sb-xc:fixnum l2))
                                  (<= (truly-the sb-xc:fixnum h1) (truly-the sb-xc:fixnum h2)))
                             t)))))))
         (memoize
          (invoke-type-method :simple-subtypep :complex-subtypep-arg2
                               type1 type2
                               :complex-arg1 :complex-subtypep-arg1)))))

;;; Just parse the type specifiers and call CSUBTYPE.
;;; Well, not "just" - Despite memoization of parsing and CSUBTYPEP,
;;; it's nonetheless better to test EQUAL first, which is ~10x faster
;;; in the positive case, and insigificant in the negative.
;;; The specifiers might not be legal type specifiers,
;;; but we're not obligated to police that:
;;;   "This version eliminates the requirement to signal an error."
;;; http://www.lispworks.com/documentation/HyperSpec/Issues/iss335_w.htm
;;; (Status: Passed, as amended, Jun89 X3J13)
;;;
;;; Also, inferring from the version of the text that was obsoleted
;;; - which while it has no direct impact on the final requirement,
;;; implies something about what would have been legal -
;;;   "SUBTYPEP must always return values T T in the case where the two
;;;    type specifiers (or their expansions) are EQUAL."
;;; i.e. though it is not longer technically a MUST, it suggests that EQUAL is
;;; in fact a valid implementation, at least where it computes T.
(defun subtypep (type1 type2 &optional environment)
  "Return two values indicating the relationship between type1 and type2.
  If values are T and T, type1 definitely is a subtype of type2.
  If values are NIL and T, type1 definitely is not a subtype of type2.
  If values are NIL and NIL, it couldn't be determined."
  (declare (type lexenv-designator environment) (ignore environment))
  (declare (explicit-check))
  (if (and #-sb-xc-host
           (sb-c:policy sb-c::*policy* (not (or (> debug 1)
                                                (= safety 3))))
           (equal type1 type2))
      (values t t)
      (csubtypep (specifier-type type1) (specifier-type type2))))

(declaim (start-block))

;;; Helper for TYPE= so that we can separately cache the :SIMPLE-= method.
(sb-impl::!define-hash-cache %simple-type=
                             ((type1 eq) (type2 eq))
                             :hash-function #'hash-ctype-pair
                             :hash-bits 11 :values 2)

;;; If two types are definitely equivalent, return true. The second
;;; value indicates whether the first value is definitely correct.
;;; This should only fail in the presence of HAIRY types.
(defun-cached (type= :hash-function #'hash-ctype-pair
                     :hash-bits 12
                     :memoizer memoize
                     :values 2)
              ((type1 eq) (type2 eq))
  (declare (type ctype type1 type2))
  (macrolet ((quick-fail-simple-=-mask ()
               ;; The set of type-classes for which not EQ implies not TYPE=.
               (loop for class in '(character-set classoid member named number
                                    #+sb-simd-pack simd-pack
                                    #+sb-simd-pack-256 simd-pack-256)
                     sum (ash 1 (type-class-name->id class))))
             (quick-fail-complex-= ()
               ;; Fail if neither arg is in a class that defines a COMPLEX-= method
               (let ((mask (loop for class in classes-having-complex-=-method
                                 sum (ash 1 (type-class-name->id class)))))
                 `(not (logtest (logior (ash 1 id1) (ash 1 id2)) ,mask)))))
    (if (eq type1 type2)
        (values t t)
        (let ((id1 (type-class-id type1))
              (id2 (type-class-id type2)))
          (cond ((/= id1 id2)
                 (if (quick-fail-complex-=)
                     (values nil t)
                     (memoize (invoke-type-method :none :complex-= type1 type2))))
                ((logbitp id1 (quick-fail-simple-=-mask))
                 (values nil t))
                (t ; use the SIMPLE-= method
                 ;; A cached answer for swapped args is the same, so always put the smaller
                 ;; hash first, and we might win with a previous answer.
                 #+nil ; not 100% sure this is legal even with SIMPLE-=
                 (when (< (type-hash-value type2) (type-hash-value type1))
                   (rotatef type1 type2))
                 (sb-impl::with-cache (%simple-type= type1 type2)
                   (funcall (type-class-simple-=
                             (type-id->type-class (type-class-id type1)))
                            type1 type2))))))))

;;; Not exactly the negation of TYPE=, since when the relationship is
;;; uncertain, we still return NIL, NIL. This is useful in cases where
;;; the conservative assumption is =.
(defun type/= (type1 type2)
  (declare (type ctype type1 type2))
  (multiple-value-bind (res win) (type= type1 type2)
    (if win
        (values (not res) t)
        (values nil nil))))

(declaim (end-block))

;;; the type method dispatch case of TYPE-UNION2
(defun %type-union2 (type1 type2)
  ;; As in %TYPE-INTERSECTION2, it seems to be a good idea to give
  ;; both argument orders a chance at COMPLEX-INTERSECTION2. Unlike
  ;; %TYPE-INTERSECTION2, though, I don't have a specific case which
  ;; demonstrates this is actually necessary. Also unlike
  ;; %TYPE-INTERSECTION2, there seems to be no need to distinguish
  ;; between not finding a method and having a method return NIL.
  (flet ((1way (x y)
           (invoke-type-method :simple-union2 :complex-union2
                                x y
                                :default nil)))
    (declare (inline 1way))
    (or (1way type1 type2)
        (1way type2 type1))))

;;; Find a type which includes both types. Any inexactness is
;;; represented by the fuzzy element types; we return a single value
;;; that is precise to the best of our knowledge. This result is
;;; simplified into the canonical form, thus is not a UNION-TYPE
;;; unless we find no other way to represent the result.
(defun-cached (type-union2 :hash-function #'hash-ctype-pair
                           :hash-bits 11
                           :memoizer memoize)
              ((type1 eq) (type2 eq))
  ;; KLUDGE: This was generated from TYPE-INTERSECTION2 by Ye Olde Cut And
  ;; Paste technique of programming. If it stays around (as opposed to
  ;; e.g. fading away in favor of some CLOS solution) the shared logic
  ;; should probably become shared code. -- WHN 2001-03-16
  (declare (type ctype type1 type2))
  (let ((t2 nil))
    (if (eq type1 type2)
        type1
        (memoize
         (cond
          ;; CSUBTYPEP for array-types answers questions about the
          ;; specialized type, yet for union we want to take the
          ;; expressed type in account too.
          ((and (not (and (array-type-p type1) (array-type-p type2)))
                (or (setf t2 (csubtypep type1 type2))
                    (csubtypep type2 type1)))
           (if t2 type2 type1))
         ((or (union-type-p type1)
              (union-type-p type2))
          ;; Unions of UNION-TYPE should have the UNION-TYPE-TYPES
          ;; values broken out and united separately. The full TYPE-UNION
          ;; function knows how to do this, so let it handle it.
          (type-union type1 type2))
         (t
          ;; the ordinary case: we dispatch to type methods
          (%type-union2 type1 type2)))))))

;;; the type method dispatch case of TYPE-INTERSECTION2
(defun %type-intersection2 (type1 type2)
  ;; We want to give both argument orders a chance at
  ;; COMPLEX-INTERSECTION2. Without that, the old CMU CL type
  ;; methods could give noncommutative results, e.g.
  ;;   (TYPE-INTERSECTION2 *EMPTY-TYPE* SOME-HAIRY-TYPE)
  ;;     => NIL, NIL
  ;;   (TYPE-INTERSECTION2 SOME-HAIRY-TYPE *EMPTY-TYPE*)
  ;;     => #<NAMED-TYPE NIL>, T
  ;; We also need to distinguish between the case where we found a
  ;; type method, and it returned NIL, and the case where we fell
  ;; through without finding any type method. An example of the first
  ;; case is the intersection of a HAIRY-TYPE with some ordinary type.
  ;; An example of the second case is the intersection of two
  ;; completely-unrelated types, e.g. CONS and NUMBER, or SYMBOL and
  ;; ARRAY.
  ;;
  ;; (Why yes, CLOS probably *would* be nicer..)
  (flet ((1way (x y)
           (invoke-type-method :simple-intersection2 :complex-intersection2
                                x y
                                :default :call-other-method)))
    (declare (inline 1way))
    (let ((xy (1way type1 type2)))
      (or (and (not (eql xy :call-other-method)) xy)
          (let ((yx (1way type2 type1)))
            (or (and (not (eql yx :call-other-method)) yx)
                (cond ((and (eql xy :call-other-method)
                            (eql yx :call-other-method))
                       *empty-type*)
                      (t
                       nil))))))))

(defun-cached (type-intersection2 :hash-function #'hash-ctype-pair
                                  :hash-bits 11
                                  :memoizer memoize
                                  :values 1)
              ((type1 eq) (type2 eq))
  (declare (type ctype type1 type2))
  (if (eq type1 type2)
         ;; FIXME: For some reason, this doesn't catch e.g. type1 =
         ;; type2 = (SPECIFIER-TYPE
         ;; 'SOME-UNKNOWN-TYPE). Investigate. - CSR, 2002-04-10
      type1
      (memoize
       (cond
        ((or (intersection-type-p type1)
             (intersection-type-p type2))
         ;; Intersections of INTERSECTION-TYPE should have the
         ;; INTERSECTION-TYPE-TYPES values broken out and intersected
         ;; separately. The full TYPE-INTERSECTION function knows how
         ;; to do that, so let it handle it.
         (type-intersection type1 type2))
        (t
         ;; the ordinary case: we dispatch to type methods
         (%type-intersection2 type1 type2))))))

;;; Return as restrictive and simple a type as we can discover that is
;;; no more restrictive than the intersection of TYPE1 and TYPE2. At
;;; worst, we arbitrarily return one of the arguments as the first
;;; value (trying not to return a hairy type).
(defun type-approx-intersection2 (type1 type2)
  (cond ((type-intersection2 type1 type2))
        ((hairy-type-p type1) type2)
        (t type1)))

;;; a test useful for checking whether a derived type matches a
;;; declared type
;;;
;;; The first value is true unless the types don't intersect and
;;; aren't equal. The second value is true if the first value is
;;; definitely correct. NIL is considered to intersect with any type.
;;; If T is a subtype of either type, then we also return T, T. This
;;; way we recognize that hairy types might intersect with T.
;;;
;;; Well now given the statement above that this is "useful for ..."
;;; a particular thing, I see how treating *empty-type* magically could
;;; be useful, however given all the _other_ calls to this function within
;;; this file, it seems suboptimal, because logically it is wrong.
(defun types-equal-or-intersect (type1 type2)
  (declare (type ctype type1 type2))
  (if (or (eq type1 *empty-type*) (eq type2 *empty-type*))
      (values t t)
      (let ((intersection2 (type-intersection2 type1 type2)))
        (cond ((not intersection2)
               (if (or (csubtypep *universal-type* type1)
                       (csubtypep *universal-type* type2))
                   (values t t)
                   (values t nil)))
              ((eq intersection2 *empty-type*) (values nil t))
              (t (values t t))))))

;;; Return a Common Lisp type specifier corresponding to the TYPE
;;; object.
(defun type-specifier (type &optional simplify-fun-types)
  (declare (type ctype type))
  (funcall (type-class-unparse (type-class type))
           (if simplify-fun-types +unparse-fun-type-simplify+ 0)
           type))

;;; Return the type structure corresponding to a type specifier.
;;;
;;; Note: VALUES-SPECIFIER-TYPE-CACHE-CLEAR must be called whenever a
;;; type is defined (or redefined).
;;;
;;; As I understand things, :FORTHCOMING-DEFCLASS-TYPE behaves contrarily
;;; to the CLHS intent, which is to make the type known to the compiler.
;;; If we compile in one file:
;;;  (DEFCLASS FRUITBAT () ())
;;;  (DEFUN FRUITBATP (X) (TYPEP X 'FRUITBAT))
;;; we see that it emits a call to %TYPEP with the symbol FRUITBAT as its
;;; argument, whereas it should involve CLASSOID-CELL-TYPEP and LAYOUT-OF,
;;; which (correctly) signals an error if the class were not defined by the
;;; time of the call. Delayed re-parsing of FRUITBAT into any random specifier
;;; at call time is wrong.
;;;
;;; FIXME: symbols which are :PRIMITIVE are inconsistently accepted as singleton
;;; lists. e.g. (BIT) and (ATOM) are considered legal, but (FIXNUM) and
;;; (CHARACTER) are not. It has to do with whether the primitive is actually
;;; a DEFTYPE. The CLHS glossary implies that the singleton is *always* legal.
;;;  "For every atomic type specifier, x, there is an _equivalent_ [my emphasis]
;;;   compound type specifier with no arguments supplied, (x)."
;;; By that same reasonining, is (x) accepted if x names a class?
;;;

;;; The xc host uses an ordinary hash table for memoization.
#+sb-xc-host
(let ((table (make-hash-table :test 'equal)))
  (defun !values-specifier-type-memo-wrapper (thunk specifier)
    (or (gethash specifier table)
        (let ((parse (funcall thunk)))
          ;; THUNK must nonlocally exit to avoid caching
          (aver (not (contains-unknown-type-p parse)))
          (setf (gethash specifier table) parse))))
  (defun values-specifier-type-cache-clear ()
    (clrhash table)))
;;; This cache is sized extremely generously, which has payoff
;;; elsewhere: it improves the TYPE= and CSUBTYPEP functions,
;;; since EQ types are an immediate win.
;;; EQL isn't the best comparator, but EQUAL would be wrong
;;; because EQL specifiers must not use a weaker comparison.
;;; This means that we won't match things like (INTEGER (0) 4) to an existing
;;; entry unless it is EQ.  This is probably not a disaster.
#-sb-xc-host
(progn
(sb-impl::!define-hash-cache values-specifier-type
  ((orig list-elements-eql))
   :hash-function #'sxhash :hash-bits 10)
(declaim (inline !values-specifier-type-memo-wrapper))
(defun !values-specifier-type-memo-wrapper (thunk specifier)
  (sb-impl::with-cache (values-specifier-type specifier)
    (funcall thunk))))

(declaim (inline make-type-context))
(defstruct (type-context
            (:constructor make-type-context
                          (spec &optional proto-classoid (options 0)))
            (:copier nil)
            (:predicate nil))
  (spec nil :read-only t)
  (proto-classoid nil :read-only t)
  (options 0 :type fixnum))
(defconstant +type-parse-cache-inhibit+  1)
(defconstant +type-parse-signal-inhibit+ 2)
(defmacro type-context-cacheable (x)
  `(not (logtest (type-context-options ,x) +type-parse-cache-inhibit+)))

#-sb-xc-host
(progn (declaim (inline class-classoid))
       (defun class-classoid (class)
         (layout-classoid (sb-pcl::class-wrapper class))))

;;; HAIRY type-class has to be defined prior to defining %PARSE-TYPE.
;; ENUMERABLE-P is T because a hairy type could be equivalent to a MEMBER type.
;; e.g. any SATISFIES with a predicate returning T over a finite domain.
;; But in practice there's nothing that can be done with this information,
;; because we don't call random predicates when performing operations on types
;; as objects, only when checking for inclusion of something in the type.
(define-type-class hairy :enumerable t :might-contain-other-types t)

;;; Parsing of type specifiers comes in many variations:
;;;  SINGLE-VALUE-SPECIFIER-TYPE:
;;;    disallow VALUES even if single value, but allow *
;;;  SPECIFIER-TYPE:
;;;    disallow (VALUES ...) even if single value, and disallow *
;;;  VALUES-SPECIFIER-TYPE:
;;;    allow VALUES, disallow *
;;; TYPE-OR-NIL-IF-UNKNOWN:
;;;    like SPECIFIER-TYPE, but return NIL if contains unknown
;;; all the above are funneled through BASIC-PARSE-TYPESPEC.

;;; The recursive %PARSE-TYPE function is used for nested invocations
;;; of type spec parsing, passing the outermost context through on each call.
;;; Callers should use the BASIC-PARSE-TYPESPEC interface.

;;; Hint for when you bork this and/or bork the :UNPARSE methods - do:
;;; (remove-method #'print-object (find-method #'print-object nil
;;;    (list (find-class 'ctype) (find-class 't))))
;;; so that 'backtrace' doesn't encounter an infinite chain of errors.

(macrolet ((fail (spec)
             `(error "bad thing to be a type specifier: ~/sb-impl:print-type-specifier/"
                     ,spec)))
(defun %parse-type (spec context)
  (declare (type type-context context))
  (prog* ((head (if (listp spec) (car spec) spec))
          (builtin (if (symbolp head)
                       (info :type :builtin head)
                       (return (fail spec)))))
    (when (deprecated-thing-p 'type head)
      (setf (type-context-options context)
            (logior (type-context-options context) +type-parse-cache-inhibit+))
      (signal 'parse-deprecated-type :specifier spec))
    (when (atom spec)
      ;; If spec is non-atomic, the :BUILTIN value is inapplicable.
      ;; There used to be compound builtins, but not any more.
      (when builtin (return builtin))
      ;; Any spec that apparently refers to a defstruct form
      ;; that's being macroexpanded should refer to that type.
      (awhen (type-context-proto-classoid context)
        (when (eq (classoid-name it) spec) (return it)))
      (case (info :type :kind spec)
       (:instance (return (find-classoid spec)))
       (:forthcoming-defclass-type (go unknown))))
    ;; Expansion brings up an interesting question - should the cache
    ;; contain entries for intermediary types? Say A -> B -> REAL.
    ;; As it stands, we cache the ctype corresponding to A but not B.
    (awhen (info :type :expander head)
      (when (listp it) ; The function translates directly to a CTYPE.
        (return (or (funcall (car it) context spec) (fail spec))))
      ;; The function produces a type expression.
      (let ((expansion (funcall it (ensure-list spec))))
        (return (if (typep expansion 'instance)
                    (basic-parse-typespec expansion context)
                    (%parse-type expansion context)))))
    ;; If the spec is (X ...) and X has neither a translator
    ;; nor expander, and is a builtin, such as FIXNUM, fail now.
    ;; But - see FIXME at top - it would be consistent with
    ;; DEFTYPE to reject spec only if not a singleton.
    (when builtin (return (fail spec)))
    ;; SPEC has a legal form, so return an unknown type.
    (unless (logtest (type-context-options context) +type-parse-signal-inhibit+)
      (signal 'parse-unknown-type :specifier spec))
  UNKNOWN
    (setf (type-context-options context)
          (logior (type-context-options context) +type-parse-cache-inhibit+))
    (return (make-unknown-type spec))))

;;; BASIC-PARSE-TYPESPEC can grok some simple cases that involve turning an object
;;; used as a type specifier into an internalized type object (which might be
;;; the selfsame object, in the case of a CLASSOID).
;;;
;;; FIXME: nothing in the spec precludes calling TYPEP on a type specifier composed
;;; of dynamic-extent lists. Such a specifier must be uncacheable.
;;; Worse- the MEMBER type can have problems with the items per se, because the parse
;;; retains the items. There is no _practical_ reason to have such a type, as the atoms
;;; for which MEMBER tends to be used (symbol, number) can't be DX-allocated.
;;; Nonetheless, memoizing arbitrary user-supplied data is not careful enough.
(defun basic-parse-typespec (type-specifier context)
  (declare (type type-context context))
  (when (typep type-specifier 'instance)
    ;; An instance never needs the type parser cache, because it almost always
    ;; represents itself or a slot in itself.
    (flet ((classoid-to-ctype (classoid)
             ;; A few classoids have translations,
             ;; e.g. the classoid CONS is a CONS-TYPE.
             ;; Hmm, perhaps this should signal PARSE-UNKNOWN-TYPE
             ;; if CLASSOID is an instance of UNDEFINED-CLASSOID ?
             ;; Can that happen?
             (or (and (built-in-classoid-p classoid)
                      (built-in-classoid-translation classoid))
                 classoid)))
      (return-from basic-parse-typespec
       (cond ((classoid-p type-specifier) (classoid-to-ctype type-specifier))
             ;; Avoid TYPEP on SB-MOP:EQL-SPECIALIZER and CLASS because
             ;; the fake metaobjects do not allow type analysis, and
             ;; would cause a compiler error as it tries to decide
             ;; whether any clause of this COND subsumes another.
             ;; Moreover, we don't require the host to support MOP.
             #-sb-xc-host
             ((sb-pcl::classp type-specifier)
              ;; A CLOS class is translated to its CLASSOID, or the classoid's translation.
              (classoid-to-ctype (sb-pcl::class-classoid type-specifier)))
             #-sb-xc-host
             ((sb-pcl::eql-specializer-p type-specifier)
              ;; EQL specializers are are seldom used and not 100% portable,
              ;; though they are part of the AMOP.
              ;; See https://sourceforge.net/p/sbcl/mailman/message/11217378/
              ;; We rely on caching of singleton EQL types to make this efficient.
              (make-eql-type (sb-mop::eql-specializer-object type-specifier)))
             ((layout-p type-specifier)
              (layout-classoid type-specifier))
             (t (fail type-specifier))))))
  (when (atom type-specifier)
    ;; Try to bypass the cache, which avoids using a cache line for standard
    ;; atomic specifiers. This is a trade-off- cache seek might be faster,
    ;; but this solves the problem that a full call to (TYPEP #\A 'FIXNUM)
    ;; consed a cache line every time the cache missed on FIXNUM (etc).
    (awhen (info :type :builtin type-specifier)
        (return-from basic-parse-typespec it)))

  ;; If CONTEXT was non-cacheable as supplied, the cache is bypassed
  ;; for any nested lookup, and we don't insert the result.
  (if (not (type-context-cacheable context))
      (%parse-type (uncross type-specifier) context)
      ;; Otherwise, try for a cache hit first, and usually update the cache.
      (!values-specifier-type-memo-wrapper
       (lambda ()
         (let ((answer (%parse-type (uncross type-specifier) context)))
           (if (and (type-context-cacheable context)
                    #-sb-xc-host (heap-allocated-p type-specifier))
               answer
                 ;; Lookup was cacheable, but result isn't.
                 ;; Non-caching ensures that we see every occurrence of an unknown
                 ;; type no matter how deeply nested it is in the expression.
                 ;; e.g. (OR UNKNOWN-FOO CONS) and (OR INTEGER UNKNOWN-FOO)
                 ;; should both signal the PARSE-UNKNOWN condition, which would
                 ;; not happen if the first cached UNKNOWN-FOO.

                 ;; During make-host-2 I'm seeing the types &OPTIONAL-AND-&KEY-IN-LAMBDA-LIST,
                 ;; SIMPLE-ERROR, DISASSEM-STATE as non-cacheable,
                 ;; and much, much more during make-target-2.
                 ;; The condition types are obvious, because we mention them before
                 ;; defining them.
                 ;; DISASSEM-STATE comes from building **TYPE-SPEC-INTERR-SYMBOLS**
                 ;; where we have a fixed list of types which get assigned single-byte
                 ;; error codes.
               (progn
                   #+nil
                   (unless (type-context-cacheable context)
                     (format t "~&non-cacheable: ~S ~%" type-specifier))
                   (return-from basic-parse-typespec answer)))))
       type-specifier)))
) ; end MACROLET

;;; This takes no CONTEXT (which implies lack of recursion) because
;;; you can't reasonably place a VALUES type inside another type.
(defun values-specifier-type (type-specifier)
  ;; This catches uses of literal '* where it shouldn't appear, but it
  ;; accidentally lets other uses slip through. We'd have to catch '*
  ;; post-type-expansion to be more strict, but it isn't very important.
  (cond ((eq type-specifier '*)
         (warn "* is not permitted as a type specifier")
         *universal-type*)
        (t
         (dx-let ((context (make-type-context type-specifier)))
           (basic-parse-typespec type-specifier context)))))

;;; This is like VALUES-SPECIFIER-TYPE, except that we guarantee to
;;; never return a VALUES type.
;;; CONTEXT is either an instance of TYPE-CONTEXT or NIL.
;;; SUBCONTEXT is a symbol denoting the head of the current expression, or NIL.
(defun specifier-type (type-specifier &optional context subcontext)
  (let* ((ctype
           (if context
               (basic-parse-typespec type-specifier context)
               (dx-let ((context (make-type-context type-specifier)))
                 (basic-parse-typespec type-specifier context))))
         (wildp (eq ctype *wild-type*)))
    ;; We have to see how it was spelled to give an intelligent message.
    ;; If it's instance of VALUES-TYPE, then it was spelled as VALUES
    ;; whereas if it isn't, the user either spelled it as (VALUES) or *.
    ;; The case where this heuristic doesn't work is a DEFTYPE that expands
    ;; to *, but that's not worth worrying about.
    (cond ((or (values-type-p ctype)
               (and wildp (consp type-specifier)))
           (error "VALUES type illegal in this context:~% ~
               ~/sb-impl:print-type-specifier/"
                  type-specifier))
          (wildp
           (when context
             (setf (type-context-options context)
                   (logior (type-context-options context)
                           +type-parse-cache-inhibit+)))
           (if subcontext
               (warn "* is not permitted as an argument to the ~S type specifier"
                     subcontext)
               (warn "* is not permitted as a type specifier~@[ in the context ~S~]"
                     ;; If the entire surrounding context is * then there's not much
                     ;; else to say. Otherwise, show the original expression.
                     (when (and context (neq (type-context-spec context) '*))
                       (type-context-spec context))))
           *universal-type*)
          (t
           ctype))))

(defun single-value-specifier-type (x &optional context)
  (if (eq x '*)
      *universal-type*
      (specifier-type x context)))

;;; When cross-compiling SPECIFIER-TYPE with a quoted argument,
;;; it can be rendered as a literal object unless it mentions
;;; certain classoids.
;;;
;;; This is important for type system initialization.
;;;
;;; After the target is built, we remove this transform, both because calls
;;; to SPECIFIER-TYPE do not arise organically through user code,
;;; and because it is possible that user changes to types could make parsing
;;; return a different thing, e.g. changing a DEFTYPE to a DEFCLASS.
;;;
#+sb-xc-host
(labels ((xform (type-spec env parser)
           (if (not (constantp type-spec env))
               (values nil t)
               (let* ((expr (constant-form-value type-spec env))
                      (parse (funcall parser expr)))
                 (if (cold-dumpable-type-p parse)
                     parse
                     (values nil t)))))
         (cold-dumpable-type-p (ctype)
           (when (contains-unknown-type-p ctype)
             (bug "SPECIFIER-TYPE transform parsed an unknown type: ~S" ctype))
           (map-type (lambda (type)
                       (when (and (classoid-p type) (eq (classoid-name type) 'class))
                         (return-from cold-dumpable-type-p nil)))
                     ctype)
           t))
  (sb-c:define-source-transform specifier-type (type-spec &environment env)
    (xform type-spec env #'specifier-type))
  (sb-c:define-source-transform values-specifier-type (type-spec &environment env)
    (xform type-spec env #'values-specifier-type)))

(defun typexpand-1 (type-specifier &optional env)
  "Takes and expands a type specifier once like MACROEXPAND-1.
Returns two values: the expansion, and a boolean that is true when
expansion happened."
  (declare (type type-specifier type-specifier))
  (declare (type lexenv-designator env) (ignore env))
  (let* ((spec type-specifier)
         (atom (if (listp spec) (car spec) spec))
         (expander (and (symbolp atom) (info :type :expander atom))))
               ;; We do not expand builtins even though it'd be
               ;; possible to do so sometimes (e.g. STRING) for two
               ;; reasons:
               ;;
               ;; a) From a user's point of view, CL types are opaque.
               ;;
               ;; b) so (EQUAL (TYPEXPAND 'STRING) (TYPEXPAND-ALL 'STRING))
    (if (and (functionp expander) (not (info :type :builtin atom)))
        (values (funcall expander (if (symbolp spec) (list spec) spec)) t)
        (values type-specifier nil))))

(defun typexpand (type-specifier &optional env)
  "Takes and expands a type specifier repeatedly like MACROEXPAND.
Returns two values: the expansion, and a boolean that is true when
expansion happened."
  ;; TYPE-SPECIFIER is of type TYPE-SPECIFIER, but it is preferable to
  ;; defer to TYPEXPAND-1 for the typecheck. Similarly for ENV.
  (multiple-value-bind (expansion expanded)
      (typexpand-1 type-specifier env)
    (if expanded
        (values (typexpand expansion env) t)
        (values expansion expanded))))

;;; Take a list of type specifiers, computing the translation of each
;;; specifier and defining it as a builtin type.
;;; Seee the comments in 'type-init' for why this is a slightly
;;; screwy way to go about it.
(declaim (ftype (function (list) (values)) !precompute-types))
(defun !precompute-types (specs)
  (dolist (spec specs)
    (let ((res (handler-bind
                   ((parse-unknown-type
                     (lambda (c)
                       (declare (ignore c))
                       ;; We can handle conditions at this point,
                       ;; but win32 can not perform i/o here because
                       ;; !MAKE-COLD-STDERR-STREAM has no implementation.
                       ;; FIXME: where is this coming from???
                       #+nil
                       (progn (write-string "//caught: parse-unknown ")
                              (write spec)
                              (terpri)))))
             (specifier-type spec))))
      (unless (unknown-type-p res)
        (setf (info :type :builtin spec) res)
        (setf (info :type :kind spec) :primitive))))
  (values))

;;; Parse TYPE-SPECIFIER, returning NIL if any sub-part of it is unknown
(defun type-or-nil-if-unknown (type-specifier &optional allow-values)
  (dx-let ((context (make-type-context type-specifier)))
    (let ((result (if allow-values
                      (basic-parse-typespec type-specifier context)
                      (specifier-type type-specifier context))))
      ;; If it was non-cacheable, either it contained a deprecated type
      ;; or unknown type, or was a pending defstruct definition.
      (if (and (not (type-context-cacheable context))
               (contains-unknown-type-p result))
          nil
          result))))

(defun-cached (type-negation :hash-function #'type-%bits
                             :hash-bits 8
                             :values 1)
              ((type eq))
  (declare (type ctype type))
  (funcall (type-class-negate (type-class type)) type))

(defun-cached (type-singleton-p :hash-function #'type-%bits
                             :hash-bits 8
                             :values 2)
              ((type eq))
  (declare (type ctype type))
  (let ((function (type-class-singleton-p (type-class type))))
    (if function
        (funcall function type)
        (values nil nil))))


;;;; general TYPE-UNION and TYPE-INTERSECTION operations
;;;;
;;;; These are fully general operations on CTYPEs: they'll always
;;;; return a CTYPE representing the result.

;;; shared logic for unions and intersections: Return a list of
;;; types representing the same types as INPUT-TYPES, but with
;;; COMPOUND-TYPEs satisfying %COMPOUND-TYPE-P broken up into their
;;; component types, and with any SIMPLIFY2 simplifications applied.
(macrolet
    ((def (name compound-type-p simplify2)
         `(defun ,name (types)
            (when types
              (multiple-value-bind (first rest)
                  (if (,compound-type-p (car types))
                      (values (car (compound-type-types (car types)))
                              (append (cdr (compound-type-types (car types)))
                                      (cdr types)))
                      (values (car types) (cdr types)))
                (let ((rest (,name rest)) u)
                  (dolist (r rest (cons first rest))
                    (when (setq u (,simplify2 first r))
                      (return (,name (nsubstitute u r rest)))))))))))
  (def simplify-intersections intersection-type-p type-intersection2)
  (def simplify-unions union-type-p type-union2))

(defun maybe-distribute-one-union (union-type types)
  (let* ((intersection (%type-intersection types))
         (union (mapcar (lambda (x) (type-intersection x intersection))
                        (union-type-types union-type))))
    (if (notany (lambda (x) (or (hairy-type-p x)
                                (intersection-type-p x)))
                union)
        union
        nil)))

(define-type-class intersection
                    :enumerable #'compound-type-enumerable
                    :might-contain-other-types t)

(defun type-intersection (&rest input-types)
  (declare (dynamic-extent input-types))
  (%type-intersection input-types))
(defun-cached (%type-intersection :hash-bits 10 :hash-function #'hash-ctype-list)
    ((input-types list-elts-eq (ensure-heap-list input-types)))
  (let ((simplified-types (simplify-intersections input-types)))
    (declare (type list simplified-types))
    ;; We want to have a canonical representation of types (or failing
    ;; that, punt to HAIRY-TYPE). Canonical representation would have
    ;; intersections inside unions but not vice versa, since you can
    ;; always achieve that by the distributive rule. But we don't want
    ;; to just apply the distributive rule, since it would be too easy
    ;; to end up with unreasonably huge type expressions. So instead
    ;; we try to generate a simple type by distributing the union; if
    ;; the type can't be made simple, we punt to HAIRY-TYPE.
    (if (and (cdr simplified-types) (some #'union-type-p simplified-types))
        (let* ((first-union (find-if #'union-type-p simplified-types))
               (other-types (coerce (remove first-union simplified-types)
                                    'list))
               (distributed (maybe-distribute-one-union first-union
                                                        other-types)))
          (if distributed
              (%type-union distributed)
              #+nil
              (%make-hairy-type `(and ,@(map 'list #'type-specifier
                                             simplified-types)))
              (bug "Unexpected %MAKE-HAIRY-TYPE")))
        (cond
          ((null simplified-types) *universal-type*)
          ((null (cdr simplified-types)) (car simplified-types))
          (t (new-ctype intersection-type
              #'compound-type-flags
              (some #'type-enumerable simplified-types)
              (intern-ctype-set simplified-types)))))))

(defun make-union-type (enumerable types)
  (new-ctype union-type #'compound-type-flags enumerable (intern-ctype-set types)))
(defun type-union (&rest input-types)
  (declare (dynamic-extent input-types))
  (%type-union input-types))
(defun-cached (%type-union :hash-bits 8 :hash-function #'hash-ctype-list)
    ((input-types list-elts-eq (ensure-heap-list input-types)))
  (let ((simplified-types (simplify-unions input-types)))
    (cond
      ((null simplified-types) *empty-type*)
      ((null (cdr simplified-types)) (car simplified-types))
      (t (make-union-type
          (every #'type-enumerable simplified-types)
          simplified-types)))))

;;;; built-in types

(defun cons-type-might-be-empty-type (type)
  (declare (type cons-type type))
  (let ((car-type (cons-type-car-type type))
        (cdr-type (cons-type-cdr-type type)))
    (or
     (if (cons-type-p car-type)
         (cons-type-might-be-empty-type car-type)
         (multiple-value-bind (yes surep)
             (type= car-type *empty-type*)
           (aver (not yes))
           (not surep)))
     (if (cons-type-p cdr-type)
         (cons-type-might-be-empty-type cdr-type)
         (multiple-value-bind (yes surep)
             (type= cdr-type *empty-type*)
           (aver (not yes))
           (not surep))))))

(defun cons-type-length-info (type)
  (declare (type cons-type type))
  (do ((min 1 (1+ min))
       (cdr (cons-type-cdr-type type) (cons-type-cdr-type cdr)))
      ((not (cons-type-p cdr))
       (cond
         ((csubtypep cdr (specifier-type 'null))
          (values min t))
         ((csubtypep *universal-type* cdr)
          (values min nil))
         ((type/= (type-intersection (specifier-type 'cons) cdr) *empty-type*)
          (values min nil))
         ((type/= (type-intersection (specifier-type 'null) cdr) *empty-type*)
          (values min t))
         (t (values min :maybe))))
    ()))

;;; This macro aids in producing a constant ctype instance with less worry about
;;; execution order of LOAD-TIME-VALUE with respect to toplevel forms.
;;; In make-host-1, the answer is computed just-in-time and memoized,
;;; and in make-host-2 it's a literal object at macroexpansion time.
(defmacro inline-cache-ctype (constructor specifier)
  (declare (ignorable constructor specifier))
  ;; CLISP incorrectly coalesces LOAD-TIME-VALUE expressions that are EQUAL,
  ;; so provide some assurance that they aren't.
  #+sb-xc-host `(let ((cell (load-time-value (list nil ',specifier))))
                  (or (car cell) (setf (car cell) ,constructor)))
  #-sb-xc-host (specifier-type specifier))

;;; Return T if TYPE is one defined in the language spec, and whose representation
;;; in SBCL's type-class taxonomy entails that of an INTERSECTION-TYPE.
;;; This function can be called no sooner than 'deftypes-for-targets' gets loaded,
;;; so that we don't see undefined types.
(macrolet ((specifier-type-once-only (spec)
             `(inline-cache-ctype (the intersection-type (specifier-type ',spec))
                                  ,spec)))
(defun cl-std-intersection-type-p (type)
  (cond ((eq type (specifier-type-once-only keyword)) 'keyword)
        ((eq type (specifier-type-once-only compiled-function)) 'compiled-function)
        ((eq type (specifier-type-once-only ratio)) 'ratio))))

(define-type-method (named :complex-=) (type1 type2)
  (cond
    ((and (eq type2 *empty-type*)
          (or (and (intersection-type-p type1)
                   ;; not allowed to be unsure on these...
                   (not (cl-std-intersection-type-p type1)))
              (and (cons-type-p type1)
                   (cons-type-might-be-empty-type type1))))
     ;; things like (AND (EQL 0) (SATISFIES ODDP)) or (AND FUNCTION
     ;; STREAM) can get here.  In general, we can't really tell
     ;; whether these are equal to NIL or not, so
     (values nil nil))
    ((type-might-contain-other-types-p type1)
     (invoke-complex-=-other-method type1 type2))
    (t (values nil t))))

(define-type-method (named :simple-subtypep) (type1 type2)
  (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
  (aver (not (eq type1 type2)))
  (values (or (eq type1 *empty-type*)
              (eq type2 *wild-type*)
              (eq type2 *universal-type*)) t))

(define-type-method (named :complex-subtypep-arg1) (type1 type2)
  ;; This AVER causes problems if we write accurate methods for the
  ;; union (and possibly intersection) types which then delegate to
  ;; us; while a user shouldn't get here, because of the odd status of
  ;; *wild-type* a type-intersection executed by the compiler can. -
  ;; CSR, 2002-04-10
  ;;
  ;; (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
  (cond ((eq type1 *empty-type*)
         t)
        (;; When TYPE2 might be the universal type in disguise
         (type-might-contain-other-types-p type2)
         ;; Now that the UNION and HAIRY COMPLEX-SUBTYPEP-ARG2 methods
         ;; can delegate to us (more or less as CALL-NEXT-METHOD) when
         ;; they're uncertain, we can't just barf on COMPOUND-TYPE and
         ;; HAIRY-TYPEs as we used to. Instead we deal with the
         ;; problem (where at least part of the problem is cases like
         ;;   (SUBTYPEP T '(SATISFIES FOO))
         ;; or
         ;;   (SUBTYPEP T '(AND (SATISFIES FOO) (SATISFIES BAR)))
         ;; where the second type is a hairy type like SATISFIES, or
         ;; is a compound type which might contain a hairy type) by
         ;; returning uncertainty.
         (values nil nil))
        ((eq type1 *funcallable-instance-type*)
         (values (eq type2 (specifier-type 'function)) t))
        (t
         ;; This case would have been picked off by the SIMPLE-SUBTYPEP
         ;; method, and so shouldn't appear here.
         (aver (not (named-type-p type2)))
         ;; Since TYPE2 is not EQ *UNIVERSAL-TYPE* and is not another
         ;; named type in disguise, TYPE2 is not a superset of TYPE1.
         (values nil t))))

;;; Return T if members of this classoid certainly have INSTANCE-POINTER-LOWTAG.
;;; Logically it is the near opposite of CLASSOID-NON-INSTANCE-P, but not quite.
;;; CTYPEs which are not represented as a classoid return NIL for both predicates
;;; as do PCL types which may be either funcallable or non-funcallable.
;;;
;;; But some of that generality seems wrong. I don't think it would be allowed
;;; to have (as merely an example) an EQL-SPECIALIZER which is funcallable,
;;; having FUN-POINTER-LOWTAG instead of INSTANCE-POINTER-LOWTAG). Yet we think
;;; it could happen, because the parse of the type (AND EQL-SPECIALIZER INSTANCE)
;;; yields #<INTERSECTION-TYPE (AND SB-MOP:EQL-SPECIALIZER INSTANCE)>
;;; versus simplifying down to EQL-SPECIALIZER.
#| (loop for c being each hash-key of (classoid-subclasses (find-classoid 't))
      do (let ((not-i (classoid-non-instance-p c))
               (i (classoid-definitely-instancep c)))
           (unless (eq (not not-i) i) (format t "~S -> ~A and ~A~%" c not-i i)))) |#
(defun classoid-definitely-instancep (x)
  (or (structure-classoid-p x)
      (condition-classoid-p x)
      ;; PATHNAMEs are INSTANCEs based on the lowtag criterion
      (or (eq x (specifier-type 'logical-pathname))
          (eq x (specifier-type 'pathname)))))
(eval-when (:compile-toplevel :execute)
  (pushnew 'classoid-definitely-instancep sb-vm::*backend-cross-foldable-predicates*))

(defun classoid-is-or-inherits (sub super)
  (or (classoid-inherits-from sub super)
      (eq sub (find-classoid super))))

(define-type-method (named :complex-subtypep-arg2) (type1 type2)
  (aver (not (eq type2 *wild-type*))) ; * isn't really a type.
  (cond ((eq type2 *universal-type*)
         (values t t))
        ;; some CONS types can conceal danger
        ((and (cons-type-p type1) (cons-type-might-be-empty-type type1))
         (values nil nil))
        ((type-might-contain-other-types-p type1)
         ;; those types can be other types in disguise.  So we'd
         ;; better delegate.
         (invoke-complex-subtypep-arg1-method type1 type2))
        ((and (or (eq type2 *instance-type*)
                  (eq type2 *funcallable-instance-type*))
              (member-type-p type1))
         ;; member types can be subtypep INSTANCE and
         ;; FUNCALLABLE-INSTANCE in surprising ways.
         (invoke-complex-subtypep-arg1-method type1 type2))
        ((and (eq type2 *extended-sequence-type*) (classoid-p type1))
         (values (if (classoid-inherits-from type1 'sequence) t nil) t))
        ((and (eq type2 *instance-type*) (classoid-p type1))
         (cond ((or (classoid-non-instance-p type1)
                    (classoid-is-or-inherits type1 'function))
                (values nil t))
               ((classoid-definitely-instancep type1)
                (values t t))
               (t
                (values nil nil))))
        ((and (eq type2 *funcallable-instance-type*) (classoid-p type1))
         (if (and (not (classoid-non-instance-p type1))
                  (classoid-inherits-from type1 'function))
             (values t t)
             (values nil t)))
        ((and (eq type2 *instance-type*) (alien-type-type-p type1))
         (values t t))
        (t
         ;; FIXME: This seems to rely on there only being 4 or 5
         ;; NAMED-TYPE values, and the exclusion of various
         ;; possibilities above. It would be good to explain it and/or
         ;; rewrite it so that it's clearer.
         (values nil t))))

(define-type-method (named :simple-intersection2) (type1 type2)
  (cond
    ((and (eq type1 *extended-sequence-type*)
          (or (eq type2 *instance-type*)
              (eq type2 *funcallable-instance-type*)))
     nil)
    ((and (or (eq type1 *instance-type*)
              (eq type1 *funcallable-instance-type*))
          (eq type2 *extended-sequence-type*))
     nil)
    (t
     (hierarchical-intersection2 type1 type2))))

(define-type-method (named :complex-intersection2) (type1 type2)
  ;; FIXME: This assertion failed when I added it in sbcl-0.6.11.13.
  ;; Perhaps when bug 85 is fixed it can be reenabled.
  ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
  (flet ((empty-unless-hairy (type)
           (unless (or (type-might-contain-other-types-p type)
                       (member-type-p type))
             *empty-type*)))
    (cond
      ((eq type2 *extended-sequence-type*)
       (typecase type1
         ((satisfies classoid-definitely-instancep) *empty-type*) ; dubious!
         (classoid (cond
                     ((classoid-non-instance-p type1) *empty-type*)
                     ((classoid-inherits-from type1 'sequence) type1)))
         (t (empty-unless-hairy type1))))
      ((eq type2 *instance-type*)
       (typecase type1
         ((satisfies classoid-definitely-instancep) type1)
         (classoid (when (or (classoid-non-instance-p type1)
                             (classoid-is-or-inherits type1 'function))
                     *empty-type*))
         (alien-type-type type1)
         (t (empty-unless-hairy type1))))
      ((eq type2 *funcallable-instance-type*)
       (typecase type1
         ((satisfies classoid-definitely-instancep) *empty-type*)
         (classoid
          (cond
            ((classoid-non-instance-p type1) *empty-type*)
            ((classoid-inherits-from type1 'function) type1)
            ((type= type1 (find-classoid 'function)) type2)))
         (fun-type nil)
         (t (empty-unless-hairy type1))))
      (t (hierarchical-intersection2 type1 type2)))))

(define-type-method (named :complex-union2) (type1 type2)
  ;; Perhaps when bug 85 is fixed this can be reenabled.
  ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
  (cond
    ((eq type2 *extended-sequence-type*)
     (cond ((not (classoid-p type1)) nil)
           ((and (not (classoid-non-instance-p type1))
                 (classoid-inherits-from type1 'sequence))
            type2)))
    ((eq type2 *instance-type*)
     (when (and (classoid-p type1)
                (neq type1 (specifier-type 'function))
                (not (classoid-non-instance-p type1))
                (not (classoid-inherits-from type1 'function)))
       type2))
    ((eq type2 *funcallable-instance-type*)
     (cond ((not (classoid-p type1)) nil)
           ((classoid-non-instance-p type1) nil)
           ((not (classoid-inherits-from type1 'function)) nil)
           ((eq type1 (specifier-type 'function)) type1)
           (t type2)))
    (t (hierarchical-union2 type1 type2))))

(define-type-method (named :negate) (x)
  (aver (not (eq x *wild-type*)))
  (cond
    ((eq x *universal-type*) *empty-type*)
    ((eq x *empty-type*) *universal-type*)
    ((or (eq x *instance-type*)
         (eq x *funcallable-instance-type*)
         (eq x *extended-sequence-type*))
     (make-negation-type x))
    (t (bug "NAMED type unexpected: ~S" x))))

(define-type-method (named :unparse) (flags x)
  (named-type-name x))

;;;; hairy and unknown types

(define-type-method (hairy :negate) (x) (make-negation-type x))

(define-type-method (hairy :unparse) (flags x)
  (if (and (logtest flags +ctype-unparse-disambiguate+) (unknown-type-p x))
      x
      (hairy-type-specifier x)))

(define-type-method (hairy :simple-subtypep) (type1 type2)
  (let ((hairy-spec1 (hairy-type-specifier type1))
        (hairy-spec2 (hairy-type-specifier type2)))
    (cond ((list-elements-eql hairy-spec1 hairy-spec2)
           (values t t))
          ((maybe-reparse-specifier! type1)
           (csubtypep type1 type2))
          ((maybe-reparse-specifier! type2)
           (csubtypep type1 type2))
          (t
           (values nil nil)))))

(define-type-method (hairy :complex-subtypep-arg2) (type1 type2)
  (if (maybe-reparse-specifier! type2)
      (csubtypep type1 type2)
      (let ((specifier (hairy-type-specifier type2)))
        (cond ((and (consp specifier) (eql (car specifier) 'satisfies))
               (case (cadr specifier)
                 ((keywordp) (if (type= type1 (specifier-type 'symbol))
                                 (values nil t)
                                 (invoke-complex-subtypep-arg1-method type1 type2)))
                 (t (invoke-complex-subtypep-arg1-method type1 type2))))
              (t
               (invoke-complex-subtypep-arg1-method type1 type2))))))

(define-type-method (hairy :complex-subtypep-arg1) (type1 type2)
  (if (maybe-reparse-specifier! type1)
      (csubtypep type1 type2)
      (values nil nil)))

(define-type-method (hairy :complex-=) (type1 type2)
  (if (maybe-reparse-specifier! type2)
      (type= type1 type2)
      (values nil nil)))

;;; Without some special HAIRY cases, we massively pollute the type caches
;;; with objects that are all equivalent to *EMPTY-TYPE*. e.g.
;;;  (AND (SATISFIES LEGAL-FUN-NAME-P) (SIMPLE-ARRAY CHARACTER (*))) and
;;;  (AND (SATISFIES KEYWORDP) CONS). Since the compiler doesn't know
;;; that they're just *EMPTY-TYPE*, its keeps building more and more complex
;;; expressions involving them. I'm not sure why those two are so prevalent
;;; but they definitely seem to be.  We can improve performance by reducing
;;; them to *EMPTY-TYPE*.
(define-type-method (hairy :simple-intersection2 :complex-intersection2)
                     (type1 type2)
 (acond ((type= type1 type2)
         type1)
        ((eq type2 (specifier-type '(satisfies keywordp)))
         ;; (AND (MEMBER A) (SATISFIES KEYWORDP)) is possibly non-empty
         ;; if A is re-homed as :A. However as a special case that really
         ;; does occur, (AND (MEMBER NIL) (SATISFIES KEYWORDP))
         ;; is empty because of the illegality of changing NIL's package.
         (if (eq type1 (specifier-type 'null))
             *empty-type*
             (multiple-value-bind (answer certain)
                 (types-equal-or-intersect type1 (specifier-type 'symbol))
               (and (not answer) certain *empty-type*))))
        ((eq type2 (specifier-type '(satisfies legal-fun-name-p)))
         (multiple-value-bind (answer certain)
             (types-equal-or-intersect type1 (specifier-type 'symbol))
           (and (not answer)
                certain
                (multiple-value-bind (answer certain)
                    (types-equal-or-intersect type1 (specifier-type 'cons))
                  (and (not answer) certain *empty-type*)))))
        ((and (typep (hairy-type-specifier type2) '(cons (eql satisfies)))
              (info :function :predicate-truth-constraint
                    (cadr (hairy-type-specifier type2))))
         (multiple-value-bind (answer certain)
             (types-equal-or-intersect type1 (specifier-type it))
           (and (not answer) certain *empty-type*)))))

(define-type-method (hairy :simple-union2)
                     (type1 type2)
  (if (type= type1 type2)
      type1
      nil))

(define-type-method (hairy :simple-=) (type1 type2)
  ;; Specifiers really want to be compared by something that is more liberal than EQL
  ;; but it doesn't really matter too much because the containing objects would probably
  ;; be EQ if there was a cache hit on parsing.
  (if (list-elements-eql (hairy-type-specifier type1) (hairy-type-specifier type2))
      (values t t)
      (values nil nil)))

;;; This list exists so that we can turn builtin (SATISFIES fn) types into types
;;; amenable to algebra, because apparently there are some masochistic users
;;; who expect (SUBTYPEP 'COMPLEX '(AND NUMBER (SATISFIES REALP))) => NIL and T.
;;; There are possibly other entries that could go here,
;;; e.g. (SATISFIES ARRAY-HEADER-P) is something involving the AND, NOT, OR
;;; combinators. But it might render the expression too hairy to operate on.
(dolist (pair '((arrayp array)
                (atom atom)
                (bit-vector-p bit-vector)
                (characterp character)
                ;; can't turn (SATISFIES COMPILED-FUNCTION-P) into COMPILED-FUNCTION
                ;; because COMPILED-FUNCTION is defined in terms of SATISFIES.
                ;; (compiled-function-p compiled-function)
                (complexp complex)
                (consp cons)
                (floatp float)
                (functionp function)
                (hash-table-p hash-table)
                (integerp integer)
                ;; KEYWORD is (SATISFIES KEYWORDP), so we can't turn
                ;; the predicate into KEYWORD
                (listp list)
                (numberp number)
                (packagep package)
                (pathnamep pathname)
                (random-state-p random-state)
                (rationalp rational)
                (readtablep readtable)
                (realp real)
                (simple-bit-vector-p simple-bit-vector)
                (simple-string-p simple-string)
                (simple-vector-p simple-vector)
                (streamp stream)
                (stringp string)
                (symbolp symbol)
                (vectorp vector)))
  (destructuring-bind (function type) pair
    (setf (info :function :predicate-for function) type)))

(def-type-translator satisfies :list (&whole whole predicate-name)
  ;; "* may appear as the argument to a SATISFIES type specifier, but it
  ;;  indicates the literal symbol *" (which in practice is not useful)
  (unless (symbolp predicate-name)
    (error 'simple-type-error
           :datum predicate-name
           :expected-type 'symbol
           :format-control "The SATISFIES predicate name is not a symbol: ~S"
           :format-arguments (list predicate-name)))
  (case predicate-name
   (adjustable-array-p (specifier-type '(and array (not simple-array))))
   (t (let ((type (info :function :predicate-for predicate-name)))
        (if type
            (specifier-type type)
            (%make-hairy-type whole))))))

;;;; negation types

;; Former comment was:
;;   FIXME: is this right?  It's what they had before, anyway
;; But I think the reason it's right is that "enumerable :t" is equivalent
;; to "maybe" which is actually the conservative assumption, same as HAIRY.
(define-type-class negation :enumerable t :might-contain-other-types t)

(define-type-method (negation :negate) (x)
  (negation-type-type x))

(define-type-method (negation :unparse) (flags x)
  (if (type= (negation-type-type x) (specifier-type 'cons))
      'atom
      `(not ,(type-unparse flags (negation-type-type x)))))

(define-type-method (negation :simple-subtypep) (type1 type2)
  (csubtypep (negation-type-type type2) (negation-type-type type1)))

(define-type-method (negation :complex-subtypep-arg2) (type1 type2)
  (let* ((complement-type2 (negation-type-type type2))
         (intersection2 (type-intersection2 type1
                                            complement-type2)))
    (if intersection2
        ;; FIXME: if uncertain, maybe try arg1?
        (type= intersection2 *empty-type*)
        (invoke-complex-subtypep-arg1-method type1 type2))))

(define-type-method (negation :complex-subtypep-arg1) (type1 type2)
  ;; "Incrementally extended heuristic algorithms tend inexorably toward the
  ;; incomprehensible." -- http://www.unlambda.com/~james/lambda/lambda.txt
  ;;
  ;; You may not believe this. I couldn't either. But then I sat down
  ;; and drew lots of Venn diagrams. Comments involving a and b refer
  ;; to the call (subtypep '(not a) 'b) -- CSR, 2002-02-27.
  (block nil
    ;; (Several logical truths in this block are true as long as
    ;; b/=T. As of sbcl-0.7.1.28, it seems impossible to construct a
    ;; case with b=T where we actually reach this type method, but
    ;; we'll test for and exclude this case anyway, since future
    ;; maintenance might make it possible for it to end up in this
    ;; code.)
    (multiple-value-bind (equal certain)
        (type= type2 *universal-type*)
      (unless certain
        (return (values nil nil)))
      (when equal
        (return (values t t))))
    (let ((complement-type1 (negation-type-type type1)))
      ;; Do the special cases first, in order to give us a chance if
      ;; subtype/supertype relationships are hairy.
      (multiple-value-bind (equal certain)
          (type= complement-type1 type2)
        ;; If a = b, ~a is not a subtype of b (unless b=T, which was
        ;; excluded above).
        (unless certain
          (return (values nil nil)))
        (when equal
          (return (values nil t))))
      ;; KLUDGE: ANSI requires that the SUBTYPEP result between any
      ;; two built-in atomic type specifiers never be uncertain. This
      ;; is hard to do cleanly for the built-in types whose
      ;; definitions include (NOT FOO), i.e. CONS and RATIO. However,
      ;; we can do it with this hack, which uses our global knowledge
      ;; that our implementation of the type system uses disjoint
      ;; implementation types to represent disjoint sets (except when
      ;; types are contained in other types).  (This is a KLUDGE
      ;; because it's fragile. Various changes in internal
      ;; representation in the type system could make it start
      ;; confidently returning incorrect results.) -- WHN 2002-03-08
      (unless (or (type-might-contain-other-types-p complement-type1)
                  (type-might-contain-other-types-p type2))
        ;; Because of the way our types which don't contain other
        ;; types are disjoint subsets of the space of possible values,
        ;; (SUBTYPEP '(NOT AA) 'B)=NIL when AA and B are simple (and B
        ;; is not T, as checked above).
        (return (values nil t)))
      ;; The old (TYPE= TYPE1 TYPE2) branch would never be taken, as
      ;; TYPE1 and TYPE2 will only be equal if they're both NOT types,
      ;; and then the :SIMPLE-SUBTYPEP method would be used instead.
      ;; But a CSUBTYPEP relationship might still hold:
      (multiple-value-bind (equal certain)
          (csubtypep complement-type1 type2)
        ;; If a is a subtype of b, ~a is not a subtype of b (unless
        ;; b=T, which was excluded above).
        (unless certain
          (return (values nil nil)))
        (when equal
          (return (values nil t))))
      (multiple-value-bind (equal certain)
          (csubtypep type2 complement-type1)
        ;; If b is a subtype of a, ~a is not a subtype of b.  (FIXME:
        ;; That's not true if a=T. Do we know at this point that a is
        ;; not T?)
        (unless certain
          (return (values nil nil)))
        (when equal
          (return (values nil t))))
      ;; old CSR comment ca. 0.7.2, now obsoleted by the SIMPLE-CTYPE?
      ;; KLUDGE case above: Other cases here would rely on being able
      ;; to catch all possible cases, which the fragility of this type
      ;; system doesn't inspire me; for instance, if a is type= to ~b,
      ;; then we want T, T; if this is not the case and the types are
      ;; disjoint (have an intersection of *empty-type*) then we want
      ;; NIL, T; else if the union of a and b is the *universal-type*
      ;; then we want T, T. So currently we still claim to be unsure
      ;; about e.g. (subtypep '(not fixnum) 'single-float).
      ;;
      ;; OTOH we might still get here:
      (values nil nil))))

(define-type-method (negation :complex-=) (type1 type2)
  ;; (NOT FOO) isn't equivalent to anything that's not a negation
  ;; type, except possibly a type that might contain it in disguise.
  (declare (ignore type2))
  (if (type-might-contain-other-types-p type1)
      (values nil nil)
      (values nil t)))

(define-type-method (negation :simple-intersection2) (type1 type2)
  (let ((not1 (negation-type-type type1))
        (not2 (negation-type-type type2)))
    (cond
      ((csubtypep not1 not2) type2)
      ((csubtypep not2 not1) type1)
      ;; Why no analagous clause to the disjoint in the SIMPLE-UNION2
      ;; method, below?  The clause would read
      ;;
      ;; ((EQ (TYPE-UNION NOT1 NOT2) *UNIVERSAL-TYPE*) *EMPTY-TYPE*)
      ;;
      ;; but with proper canonicalization of negation types, there's
      ;; no way of constructing two negation types with union of their
      ;; negations being the universal type.
      (t
       (aver (not (eq (type-union not1 not2) *universal-type*)))
       nil))))

(defun maybe-complex-array-refinement (type1 type2)
  ;; a :MAYBE complex array <type> intersected with (NOT <type'>)
  ;; where <type'> is the same in all aspects as <type> except that
  ;; its complexp value is in {T,NIL} should return <type> altered
  ;; with its COMPLEXP being the negation of the value from <type'>.
  ;; As a particular case which is no longer special in handling it,
  ;; the righthand side could be TYPE= to (NOT SIMPLE-ARRAY)
  ;; which will match any lefthand side and do what it always did.
  (let* ((ntype (negation-type-type type2))
         (ndims (array-type-dimensions ntype))
         (ncomplexp (array-type-complexp ntype))
         (nseltype (array-type-specialized-element-type ntype))
         (neltype (array-type-element-type ntype)))
    (when (and (eq (array-type-complexp type1) :maybe)
               (neq ncomplexp :maybe)
               (or (eql ndims '*)
                   (equal (array-type-dimensions type1) ndims))
               (or (eq nseltype *wild-type*)
                   (eq (array-type-specialized-element-type type1) nseltype))
               (or (eq neltype *wild-type*)
                   (type= (array-type-element-type type1) neltype)))
      (make-array-type (array-type-dimensions type1)
                       :complexp (not (array-type-complexp ntype))
                       :specialized-element-type (array-type-specialized-element-type type1)
                       :element-type (array-type-element-type type1)))))

(defun remove-integer-bounds (type)
  (let ((low (numeric-type-low type))
        (high (numeric-type-high type)))
    (make-numeric-type
     :class (numeric-type-class type)
     :format (numeric-type-format type)
     :complexp (numeric-type-complexp type)
     :low (if (integerp low) (list low) low)
     :high (if (integerp high) (list high) high))))

(define-type-method (negation :complex-intersection2) (type1 type2)
  (cond
    ((csubtypep type1 (negation-type-type type2)) *empty-type*)
    ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
     type1)
    ((and (array-type-p type1) (array-type-p (negation-type-type type2)))
     (maybe-complex-array-refinement type1 type2))
    ((and (numeric-type-p type1)
          (eql (numeric-type-class type1) 'rational)
          (csubtypep (sb-kernel:specifier-type 'integer) (negation-type-type type2))
          (or (integerp (numeric-type-low type1)) (integerp (numeric-type-high type1))))
     (type-intersection (remove-integer-bounds type1) type2))
    (t nil)))

(define-type-method (negation :simple-union2) (type1 type2)
  (let ((not1 (negation-type-type type1))
        (not2 (negation-type-type type2)))
    (cond
      ((csubtypep not1 not2) type1)
      ((csubtypep not2 not1) type2)
      ((eq (type-intersection not1 not2) *empty-type*)
       *universal-type*)
      (t nil))))

(define-type-method (negation :complex-union2) (type1 type2)
  (cond
    ((csubtypep (negation-type-type type2) type1) *universal-type*)
    ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
     type2)
    (t nil)))

(define-type-method (negation :simple-=) (type1 type2)
  (type= (negation-type-type type1) (negation-type-type type2)))

(def-type-translator not :list ((:context context) typespec)
  ;; "* is not permitted as an argument to the NOT type specifier."
  (type-negation (specifier-type typespec context 'not)))

;;;; numeric types

(declaim (inline numtype-aspects-eq))
(defun numtype-aspects-eq (type1 type2)
  (eq (numeric-type-aspects type1) (numeric-type-aspects type2)))

(defun numeric-type-enumerable (type)
  (let* ((class (numeric-type-class type))
         (low (numeric-type-low type))
         (high (numeric-type-high type)))
    (cond ((and (eq class 'integer) low high) t) ; finite integer range
          ((and (typep low '(and atom (not null))) ; inclusive bound
                (eql low high)
                ;; In the absence of thorough regression tests around infinity/nan handling
                ;; as part of MEMBER types, I'm not sure what to do here. Just guessing.
                (not (and (floatp low) (float-nan-p low))))
           t))))

(define-type-class number :enumerable #'numeric-type-enumerable :might-contain-other-types nil)

(declaim (inline bounds-unbounded-p))
(defun bounds-unbounded-p (low high)
  (and (null low) (eq high low)))

(define-type-method (number :negate) (type)
  (let ((low (numeric-type-low type))
        (high (numeric-type-high type)))
    (if (bounds-unbounded-p low high)
        (make-negation-type type)
        (type-union
         (make-negation-type (modified-numeric-type type :low nil :high nil))
         (cond
           ((null low)
            (modified-numeric-type
             type
             :low (if (consp high) (car high) (list high))
             :high nil))
           ((null high)
            (modified-numeric-type
             type
             :low nil
             :high (if (consp low) (car low) (list low))))
           (t (type-union
               (modified-numeric-type
                type
                :low nil
                :high (if (consp low) (car low) (list low)))
               (modified-numeric-type
                type
                :low (if (consp high) (car high) (list high))
                :high nil))))))))

(define-type-method (number :unparse) (flags type)
  (let* ((complexp (numeric-type-complexp type))
         (low (numeric-type-low type))
         (high (numeric-type-high type))
         (base (case (numeric-type-class type)
                 (integer 'integer)
                 (rational 'rational)
                 (float (or (numeric-type-format type) 'float))
                 (t 'real))))
    (let ((base+bounds
           (cond ((and (eq base 'integer) high low)
                  (let ((high-count (logcount high))
                        (high-length (integer-length high)))
                    (cond ((= low 0)
                           (cond ((= high 0) '(integer 0 0))
                                 ((= high 1) 'bit)
                                 ((and (= high-count high-length)
                                       (plusp high-length))
                                  `(unsigned-byte ,high-length))
                                 (t
                                  `(mod ,(1+ high)))))
                          ((and (= low most-negative-fixnum)
                                (= high most-positive-fixnum))
                           'fixnum)
                          ((and (= low (lognot high))
                                (= high-count high-length)
                                (> high-count 0))
                           `(signed-byte ,(1+ high-length)))
                          (t
                           `(integer ,low ,high)))))
                 (high `(,base ,(or low '*) ,high))
                 (low
                  (if (and (eq base 'integer) (= low 0))
                      'unsigned-byte
                      `(,base ,low)))
                 (t base))))
      (ecase complexp
        (:real
         (aver (neq base 'real))
         base+bounds)
        (:complex
         (aver (neq base 'real))
         `(complex ,base+bounds))
        ((nil)
         (aver (eq base+bounds 'real))
         'number)))))

(define-type-method (number :singleton-p) (type)
  (let ((low  (numeric-type-low  type))
        (high (numeric-type-high type)))
    (if (and low
             (eql low high)
             (eql (numeric-type-complexp type) :real)
             (if (eq (numeric-type-class type) 'float)
                 ;; (float 0.0 0.0) fits both -0.0 and 0.0
                 (not (zerop low))
                 (member (numeric-type-class type) '(integer rational))))
        (values t low)
        (values nil nil))))

;;; Coerce a numeric type bound to the given type while handling
;;; exclusive bounds.
(defun coerce-numeric-bound (bound type)
  (flet ((c (thing)
           (case type
             (rational
              (cond ((and (floatp thing) (float-infinity-p thing))
                     (return-from coerce-numeric-bound nil))
                    ((or (eql thing -0d0)
                         (eql thing -0f0))
                     0)
                    (t
                     (rational thing))))
             ((float single-float)
              (cond ((or (eql thing -0d0)
                         (eql thing -0f0))
                     0f0)
                    ((sb-xc:<= most-negative-single-float thing most-positive-single-float)
                     (coerce thing 'single-float))
                    (t
                     (return-from coerce-numeric-bound nil))))
             (double-float
              (cond ((or (eql thing -0d0)
                         (eql thing -0f0))
                     0d0)
                    ((sb-xc:<= most-negative-double-float thing most-positive-double-float)
                     (coerce thing 'double-float))
                    (t
                     (return-from coerce-numeric-bound nil)))))))
    (when bound
      (handler-case
          (if (consp bound)
              (list (c (car bound)))
              (c bound))
        #+sb-xc-host
        (error ()
          (return-from coerce-numeric-bound nil))))))

(defun %make-union-numeric-type (class format complexp low high)
  (declare (type (member integer rational float nil) class))
  (macrolet ((unionize (&rest specs)
               `(type-union
                 ,@(loop for (class format coerce simple-coerce) in specs
                         collect `(make-numeric-type
                                   :class ',class
                                   :format ',format
                                   :complexp complexp
                                   :low ,(if simple-coerce
                                             `(coerce low ',coerce)
                                             `(coerce-numeric-bound low ',coerce))
                                   :high ,(if simple-coerce
                                              `(coerce high ',coerce)
                                              `(coerce-numeric-bound high ',coerce)))))))
    (cond ((and (null class) (member complexp '(:real :complex)))
           (cond ((not (bounds-unbounded-p low high))
                  (cond ((and (floatp low) (float-infinity-p low)
                              (eql low high))
                         ;; low and high are some float
                         ;; infinity. not representable as a
                         ;; rational.
                         (let ((complexp :real)) ; TODO what if complexp was :complex?
                           (unionize (float single-float single-float t)
                                     (float double-float double-float t))))
                        (t
                         (unionize (rational nil          rational)
                                   (float    single-float single-float)
                                   (float    double-float double-float)))))
                 ((eq complexp :complex)
                  (specifier-type 'complex))
                 (t
                  (specifier-type 'real))))
          ((and (eq class 'float) (member complexp '(:real :complex))
                (eq format nil))
           (cond ((not (bounds-unbounded-p low high))
                  (if (and (floatp low) (float-infinity-p low)
                           (eql low high))
                      (let ((complexp :real))
                        (unionize (float single-float single-float t)
                                  (float double-float double-float t)
                                  #+long-float((error "long-float"))))
                      (unionize (float single-float single-float)
                                (float double-float double-float)
                                #+long-float((error "long-float")))))
                 ((eq complexp :complex)
                  (specifier-type '(complex float)))
                 (t
                  (specifier-type 'float))))
          ((and (null complexp)
                (or class format low high))
           (type-union (make-numeric-type :class class :format format :complexp :complex
                                          :low low :high high)
                       (make-numeric-type :class class :format format :complexp :real
                                          :low low :high high))))))

;;; Impose canonicalization rules for NUMERIC-TYPE. Note that in some
;;; cases, despite the name, we return *EMPTY-TYPE* or a UNION-TYPE instead of a
;;; NUMERIC-TYPE.
(defun make-numeric-type (&key class format (complexp :real) low high)
  (declare (type (member integer rational float nil) class))
  (declare (inline !compute-numtype-aspect-id))
  (let ((union-type (%make-union-numeric-type
                     class format complexp low high)))
    (when union-type (return-from make-numeric-type union-type)))
  (multiple-value-bind (low high)
      (case class
        (integer
         ;; INTEGER types always have their LOW and HIGH bounds
         ;; represented as inclusive, not exclusive values.
         (values (if (consp low) (1+ (type-bound-number low)) low)
                 (if (consp high) (1- (type-bound-number high)) high)))
        (t
         ;; no canonicalization necessary
         (values low high)))
    ;; if interval is empty
    (when (and low high
               (if (or (consp low) (consp high)) ; if either bound is exclusive
                   (sb-xc:>= (type-bound-number low) (type-bound-number high))
                   (sb-xc:> low high)))
      (return-from make-numeric-type *empty-type*))
    (when (and (eq class 'rational) (integerp low) (eql low high))
      (setf class 'integer))
    (flet ((normalize-zero (x)
             (cond
               ((eql x -0d0) 0d0)
               ((eql x -0f0) 0f0)
               ((equal x '(-0d0)) '(0d0))
               ((equal x '(-0f0)) '(0f0))
               (t x))))
      (declare (inline normalize-zero))
     (new-ctype numeric-type 0 (get-numtype-aspects complexp class format)
                (normalize-zero low)
                (normalize-zero high)))))

(defun modified-numeric-type (base
                              &key
                              (class      (numeric-type-class      base))
                              (format     (numeric-type-format     base))
                              (complexp   (numeric-type-complexp   base))
                              (low        (numeric-type-low        base))
                              (high       (numeric-type-high       base)))
  (make-numeric-type :class class
                     :format format
                     :complexp complexp
                     :low low
                     :high high))

;;; Return true if X is "less than or equal" to Y, taking open bounds
;;; into consideration. CLOSED is the predicate used to test the bound
;;; on a closed interval (e.g. <=), and OPEN is the predicate used on
;;; open bounds (e.g. <). Y is considered to be the outside bound, in
;;; the sense that if it is infinite (NIL), then the test succeeds,
;;; whereas if X is infinite, then the test fails (unless Y is also
;;; infinite).
;;;
;;; This is for comparing bounds of the same kind, e.g. upper and
;;; upper. Use NUMERIC-BOUND-TEST* for different kinds of bounds.
(defmacro numeric-bound-test (x y closed open)
  (setq closed (intern (string closed) "SB-XC")
        open (intern (string open) "SB-XC"))
  `(cond ((not ,y) t)
         ((not ,x) nil)
         ((consp ,x)
          (if (consp ,y)
              (,closed (car ,x) (car ,y))
              (,closed (car ,x) ,y)))
         (t
          (if (consp ,y)
              (,open ,x (car ,y))
              (,closed ,x ,y)))))

;;; This is used to compare upper and lower bounds. This is different
;;; from the same-bound case:
;;; -- Since X = NIL is -infinity, whereas y = NIL is +infinity, we
;;;    return true if *either* arg is NIL.
;;; -- an open inner bound is "greater" and also squeezes the interval,
;;;    causing us to use the OPEN test for those cases as well.
(defmacro numeric-bound-test* (x y closed open)
  (setq closed (intern (string closed) "SB-XC")
        open (intern (string open) "SB-XC"))
  `(cond ((not ,y) t)
         ((not ,x) t)
         ((consp ,x)
          (if (consp ,y)
              (,open (car ,x) (car ,y))
              (,open (car ,x) ,y)))
         (t
          (if (consp ,y)
              (,open ,x (car ,y))
              (,closed ,x ,y)))))

;;; Return whichever of the numeric bounds X and Y is "maximal"
;;; according to the predicates CLOSED (e.g. >=) and OPEN (e.g. >).
;;; This is only meaningful for maximizing like bounds, i.e. upper and
;;; upper. If MAX-P is true, then we return NIL if X or Y is NIL,
;;; otherwise we return the other arg.
(defmacro numeric-bound-max (x y closed open max-p)
  (setq closed (intern (string closed) "SB-XC")
        open (intern (string open) "SB-XC"))
  (once-only ((n-x x)
              (n-y y))
    `(cond ((not ,n-x) ,(if max-p nil n-y))
           ((not ,n-y) ,(if max-p nil n-x))
           ((consp ,n-x)
            (if (consp ,n-y)
                (if (,closed (car ,n-x) (car ,n-y)) ,n-x ,n-y)
                (if (,open (car ,n-x) ,n-y) ,n-x ,n-y)))
           (t
            (if (consp ,n-y)
                (if (,open (car ,n-y) ,n-x) ,n-y ,n-x)
                (if (,closed ,n-y ,n-x) ,n-y ,n-x))))))

(define-type-method (number :simple-subtypep) (type1 type2)
  (let ((class1 (numeric-type-class type1))
        (class2 (numeric-type-class type2))
        (complexp2 (numeric-type-complexp type2))
        (format2 (numeric-type-format type2))
        (low1 (numeric-type-low type1))
        (high1 (numeric-type-high type1))
        (low2 (numeric-type-low type2))
        (high2 (numeric-type-high type2)))
    ;; If one is complex and the other isn't, they are disjoint.
    (cond ((not (or (eq (numeric-type-complexp type1) complexp2)
                    (null complexp2)))
           (values nil t))
          ;; If the classes are specified and different, the types are
          ;; disjoint unless type2 is RATIONAL and type1 is INTEGER.
          ;; [ or type1 is INTEGER and type2 is of the form (RATIONAL
          ;; X X) for integral X, but this is dealt with in the
          ;; canonicalization inside MAKE-NUMERIC-TYPE ]
          ((not (or (eq class1 class2)
                    (null class2)
                    (and (eq class1 'integer) (eq class2 'rational))))
           (values nil t))
          ;; If the float formats are specified and different, the types
          ;; are disjoint.
          ((not (or (eq (numeric-type-format type1) format2)
                    (null format2)))
           (values nil t))
          ;; Check the bounds.
          ((and (numeric-bound-test low1 low2 >= >)
                (numeric-bound-test high1 high2 <= <))
           (values t t))
          (t
           (values nil t)))))

(!define-superclasses number ((number)) !cold-init-forms)

;;; If the high bound of LOW is adjacent to the low bound of HIGH,
;;; then return true, otherwise NIL. Adjacency of floating-point intervals
;;; implies that exactly one is an open interval and exactly one is closed
;;; at the adjacency point.
;;; We never (as of now) get here in the cross-compiler with target
;;; floating-point numbers. This seems legitimate as we seldom specify
;;; anything as open intervals.  The few cases seem to be the fun-types
;;; of %RANDOM-{SINGLE,DOUBLE}-FLOAT and HASH-TABLE-REHASH-mumble.
(defun numeric-types-adjacent (low high)
  (let ((low-bound (numeric-type-high low))
        (high-bound (numeric-type-low high)))
    ;; Return T if and only if X is EQL to Y, or X = 0 and -X is EQL to Y.
    ;; If both intervals have the same sign of zero at the adjacency point,
    ;; then they intersect (as per NUMERIC-TYPES-INTESECT)
    ;; so it doesn't matter much what we say here.
    (flet ((float-zeros-eqlish (x y)
             (or (eql x y)
                 ;; Calling (EQL (- X) Y) might cons. Using = would be almost the same
                 ;; but not cons, however I prefer not to assume that the caller has
                 ;; already checked for matching float formats. EQL enforces that.
                 (and (fp-zero-p x) (fp-zero-p y) (eql (sb-xc:- x) y)))))
      (cond ((not (and low-bound high-bound)) nil)
            ((and (consp low-bound) (consp high-bound)) nil)
            ((consp low-bound) (float-zeros-eqlish (car low-bound) high-bound))
            ((consp high-bound) (float-zeros-eqlish low-bound (car high-bound)))
            ((and (eq (numeric-type-class low) 'integer)
                  (eq (numeric-type-class high) 'integer))
             (eql (1+ low-bound) high-bound)) ; Integer intervals are never open
            (t
             nil)))))

;;; Return a numeric type that is a supertype for both TYPE1 and TYPE2.

(defun rational-integer-union (rational integer)
  (let ((formatr (numeric-type-format rational))
        (formati (numeric-type-format integer))
        (complexpr (numeric-type-complexp rational))
        (complexpi (numeric-type-complexp integer))
        (lowi (numeric-type-low integer))
        (highi (numeric-type-high integer))
        (lowr (numeric-type-low rational))
        (highr (numeric-type-high rational)))
    (when (and (eq formatr formati) (eq complexpr complexpi))
      (cond
        ;; handle the special-case that a single integer expands the
        ;; rational interval.
        ((and (integerp lowi) (integerp highi) (= lowi highi)
              (or (numeric-types-adjacent integer rational)
                  (numeric-types-adjacent rational integer)))
         (make-numeric-type
          :class 'rational :format formatr :complexp complexpr
          :low (numeric-bound-max lowr lowi <= < t)
          :high (numeric-bound-max highr highi >= > t)))
        ;; the general case:
        ;;
        ;; 1. expand the integer type by those integers contained by
        ;; the rational type, if possible.
        ;;
        ;; 2. turn open bounds in the rational contained in the
        ;; integer type into closed ones.
        ;;
        ;; (if neither of these applies, return NIL)
        (t
         (let* ((integers-of-rational
                 (make-numeric-type
                  :class 'integer :format formatr :complexp complexpr
                  :low (round-numeric-bound lowr 'integer formatr t)
                  :high (round-numeric-bound highr 'integer formatr nil)))
                (new-integer
                 (and (numeric-type-p integers-of-rational)
                      (or (numeric-types-intersect integers-of-rational integer)
                          (numeric-types-adjacent integers-of-rational integer)
                          (numeric-types-adjacent integer integers-of-rational))
                     (let ((new-lowi (numeric-bound-max
                                     lowi
                                     (numeric-type-low integers-of-rational)
                                     <= < t))
                           (new-highi (numeric-bound-max
                                      highi
                                      (numeric-type-high integers-of-rational)
                                      >= > t)))
                       (and (or (not (eql new-lowi lowi))
                                (not (eql new-highi highi)))
                            (make-numeric-type
                             :class 'integer :format formatr :complexp complexpr
                             :low new-lowi :high new-highi)))))
                (new-lowr
                 (and (consp lowr)
                      (integerp (car lowr))
                      (let ((low-integer
                             (make-numeric-type
                              :class 'integer :format formati :complexp complexpi
                              :low (car lowr) :high (car lowr))))
                        (and (numeric-types-intersect integer low-integer)
                             (numeric-type-low low-integer)))))
                (new-highr
                 (and (consp highr) (integerp (car highr))
                      (let ((high-integer
                             (make-numeric-type
                              :class 'integer :format formati :complexp complexpi
                              :low (car highr) :high (car highr))))
                        (and (numeric-types-intersect integer high-integer)
                             (numeric-type-high high-integer)))))
                (new-rational
                 (and (or new-lowr new-highr)
                      (make-numeric-type
                       :class 'rational :format formatr :complexp complexpr
                       :low (or new-lowr lowr) :high (or new-highr highr)))))
           (cond
             ((or new-integer new-rational)
              (make-union-type nil (list (or new-integer integer) (or new-rational rational))))
             (t nil))))))))

(define-type-method (number :simple-union2) (type1 type2)
  (declare (type numeric-type type1 type2))
  (cond ((csubtypep type1 type2) type2)
        ((csubtypep type2 type1) type1)
        (t
         (let ((class1 (numeric-type-class type1))
               (format1 (numeric-type-format type1))
               (complexp1 (numeric-type-complexp type1))
               (class2 (numeric-type-class type2))
               (format2 (numeric-type-format type2))
               (complexp2 (numeric-type-complexp type2)))
           (cond
             ((and (eq class1 class2)
                   (eq format1 format2)
                   (eq complexp1 complexp2)
                   (or (numeric-types-intersect type1 type2)
                       (numeric-types-adjacent type1 type2)
                       (numeric-types-adjacent type2 type1)))
              (make-numeric-type
               :class class1
               :format format1
               :complexp complexp1
               :low (numeric-bound-max (numeric-type-low type1)
                                       (numeric-type-low type2)
                                       <= < t)
               :high (numeric-bound-max (numeric-type-high type1)
                                        (numeric-type-high type2)
                                        >= > t)))

             ((and (eq class1 'rational) (eq class2 'integer))
              (rational-integer-union type1 type2))
             ((and (eq class1 'integer) (eq class2 'rational))
              (rational-integer-union type2 type1))
             (t nil))))))

;;; If it's longer than N
(defun weaken-numeric-type-union (n type)
  (if (and (union-type-p type)
           (nthcdr n (union-type-types type)))
      (let ((types (union-type-types type))
            by-aspect
            non-numeric
            new-types)
        (loop for type in types
              do (if (numeric-type-p type)
                     (push type (getf by-aspect (numeric-type-aspects type)))
                     (push type non-numeric)))
        (loop for (aspect types) on by-aspect by #'cddr
              do (loop with min = (numeric-type-low (car types))
                       with max = (numeric-type-high (car types))
                       for type in (cdr types)
                       do
                       (setf min (numeric-bound-max min
                                                    (numeric-type-low type)
                                                    <= < t)
                             max (numeric-bound-max max
                                                    (numeric-type-high type)
                                                    >= > t))
                       finally
                       (push (new-ctype numeric-type 0 aspect
                                        min
                                        max)
                             new-types)))
        (%type-union (append new-types non-numeric)))
      type))

(!cold-init-forms
  (setf (info :type :kind 'number) :primitive)
  (setf (info :type :builtin 'number)
        #+sb-xc-host
        (hashset-insert *numeric-type-hashset*
                        (!alloc-numeric-type #.(make-ctype-bits 'number)
                                             (get-numtype-aspects nil nil nil)
                                             nil nil))
        #-sb-xc-host (specifier-type 'number)))

(def-type-translator complex ((:context context) &optional (typespec '*))
  (if (eq typespec '*)
      (specifier-type '(complex real))
      (labels ((not-numeric ()
                 (error "The component type for COMPLEX is not numeric: ~S"
                        typespec))
               (not-real ()
                 (error "The component type for COMPLEX is not a subtype of REAL: ~S"
                        typespec))
               (complex1 (component-type)
                 (unless (numeric-type-p component-type)
                   (not-numeric))
                 (unless (eq (numeric-type-complexp component-type) :real)
                   (not-real))
                 (if (csubtypep component-type (specifier-type '(eql 0)))
                     *empty-type*
                     (modified-numeric-type component-type
                                            :complexp :complex)))
               (do-complex (ctype)
                 (cond
                   ((eq ctype *empty-type*) *empty-type*)
                   ((eq ctype *universal-type*) (not-real))
                   ((typep ctype 'numeric-type) (complex1 ctype))
                   ((typep ctype 'union-type)
                    (%type-union (mapcar #'do-complex (union-type-types ctype))))
                   ((typep ctype 'member-type)
                    (%type-union
                     (mapcar-member-type-members
                      (lambda (x)
                        (if (realp x)
                            (do-complex (ctype-of x))
                            (not-real)))
                      ctype)))
                   ((and (typep ctype 'intersection-type)
                         ;; FIXME: This is very much a
                         ;; not-quite-worst-effort, but we are required to do
                         ;; something here because of our representation of
                         ;; RATIO as (AND RATIONAL (NOT INTEGER)): we must
                         ;; allow users to ask about (COMPLEX RATIO).  This
                         ;; will of course fail to work right on such types
                         ;; as (AND INTEGER (SATISFIES ZEROP))...
                         (let ((numbers (remove-if-not
                                         #'numeric-type-p
                                         (intersection-type-types ctype))))
                           (and (car numbers)
                                (null (cdr numbers))
                                (eq (numeric-type-complexp (car numbers)) :real)
                                (complex1 (car numbers))))))
                   (t
                    (multiple-value-bind (subtypep certainly)
                        (csubtypep ctype (specifier-type 'real))
                      (if (and (not subtypep) certainly)
                          (not-real)
                          ;; ANSI just says that TYPESPEC is any subtype of
                          ;; type REAL, not necessarily a NUMERIC-TYPE. In
                          ;; particular, at this point TYPESPEC could legally
                          ;; be a hairy type like (AND NUMBER (SATISFIES
                          ;; REALP) (SATISFIES ZEROP)), in which case we fall
                          ;; through the logic above and end up here,
                          ;; stumped.
                          ;; FIXME: (COMPLEX NUMBER) is not rejected but should
                          ;; be, as NUMBER is clearly not a subtype of real.
                          (bug "~@<(known bug #145): The type ~S is too hairy to be ~
used for a COMPLEX component.~:@>"
                               typespec)))))))
        (let ((ctype (specifier-type typespec context)))
          (do-complex ctype)))))

;;; If X is *, return NIL, otherwise return the bound, which must be a
;;; member of TYPE or a one-element list of a member of TYPE.
;;; This is not necessarily the canonical bound. An integer bound
;;; should always be an atom, which we'll enforce later if needed.
(defmacro valid-bound (bound type)
  `(cond ((eq ,bound '*) nil)
         ((sb-xc:typep (if (singleton-p ,bound) (car ,bound) ,bound) ',type) ,bound)
         (t
          (error ,(format nil "~A bound is not * or ~A ~A or list of one ~:*~A: ~~S"
                          (string-capitalize bound)
                          (if (eq type 'integer) "an" "a")
                          (string-downcase type))
                 ,bound))))

(def-type-translator integer (&optional (low '*) (high '*))
  (let ((lb (valid-bound low integer))
        (hb (valid-bound high integer)))
    (make-numeric-type :class 'integer :complexp :real :low lb :high hb)))

(defmacro !def-bounded-type (type class format)
  `(def-type-translator ,type (&optional (low '*) (high '*))
     (let ((lb (valid-bound low ,type))
           (hb (valid-bound high ,type)))
       (make-numeric-type :class ',class :format ',format :low lb :high hb))))

(!def-bounded-type rational rational nil)

;;; Unlike CMU CL, we represent the types FLOAT and REAL as
;;; UNION-TYPEs of more primitive types, in order to make
;;; type representation more unique, avoiding problems in the
;;; simplification of things like
;;;   (subtypep '(or (single-float -1.0 1.0) (single-float 0.1))
;;;             '(or (real -1 7) (single-float 0.1) (single-float -1.0 1.0)))
;;; When we allowed REAL to remain as a separate NUMERIC-TYPE,
;;; it was too easy for the first argument to be simplified to
;;; '(SINGLE-FLOAT -1.0), and for the second argument to be simplified
;;; to '(OR (REAL -1 7) (SINGLE-FLOAT 0.1)) and then for the
;;; SUBTYPEP to fail (returning NIL,T instead of T,T) because
;;; the first argument can't be seen to be a subtype of any of the
;;; terms in the second argument.
;;;
;;; The old CMU CL way was:
;;;   (!def-bounded-type float float nil)
;;;   (!def-bounded-type real nil nil)
;;;
;;; FIXME: If this new way works for a while with no weird new
;;; problems, we can go back and rip out support for separate FLOAT
;;; and REAL flavors of NUMERIC-TYPE. The new way was added in
;;; sbcl-0.6.11.22, 2001-03-21.
(defun coerce-bound (bound type upperp inner-coerce-bound-fun)
  (declare (type function inner-coerce-bound-fun))
  (if (eq bound '*)
      bound
      (funcall inner-coerce-bound-fun bound type upperp)))

(macrolet ((make-bound (val)
             `(let ((coerced ,val))
                (if (listp bound) (list coerced) coerced))))

(defun inner-coerce-real-bound (bound type upperp)
  (let ((nl most-negative-long-float)
        (pl most-positive-long-float))
    (let ((nbound (if (listp bound) (car bound) bound)))
      (ecase type
        (rational
         (make-bound (rational nbound)))
        (float
         (cond
           ((floatp nbound) bound)
           (t
            ;; Coerce to the widest float format available, to avoid
            ;; unnecessary loss of precision, but don't coerce
            ;; unrepresentable numbers.
            (ecase upperp
              ((nil)
               (when (sb-xc:< nbound nl) (return-from inner-coerce-real-bound nl)))
              ((t)
               (when (sb-xc:> nbound pl) (return-from inner-coerce-real-bound pl))))
            (make-bound (coerce nbound 'long-float)))))))))

(defun inner-coerce-float-bound (bound type upperp)
  (let ((nd most-negative-double-float)
        (pd most-positive-double-float)
        (ns most-negative-single-float)
        (ps most-positive-single-float))
    (let ((nbound (if (listp bound) (car bound) bound)))
      (ecase type
        (single-float
         (cond
           ((cl:typep nbound 'single-float) bound)
           (t
            (ecase upperp
              ((nil)
               (when (sb-xc:< nbound ns) (return-from inner-coerce-float-bound ns)))
              ((t)
               (when (sb-xc:> nbound ps) (return-from inner-coerce-float-bound ps))))
            (make-bound (coerce nbound 'single-float)))))
        (double-float
         (cond
           ((cl:typep nbound 'double-float) bound)
           (t
            (ecase upperp
              ((nil)
               (when (sb-xc:< nbound nd) (return-from inner-coerce-float-bound nd)))
              ((t)
               (when (sb-xc:> nbound pd) (return-from inner-coerce-float-bound pd))))
            (make-bound (coerce nbound 'double-float)))))))))
) ; end MACROLET

(defun coerced-real-bound (bound type upperp)
  (coerce-bound bound type upperp #'inner-coerce-real-bound))
(defun coerced-float-bound (bound type upperp)
  (coerce-bound bound type upperp #'inner-coerce-float-bound))
(def-type-translator real (&optional (low '*) (high '*))
  (specifier-type `(or (float ,(coerced-real-bound  low 'float nil)
                              ,(coerced-real-bound high 'float t))
                       (rational ,(coerced-real-bound  low 'rational nil)
                                 ,(coerced-real-bound high 'rational t)))))
(def-type-translator float (&optional (low '*) (high '*))
  (specifier-type
   `(or (single-float ,(coerced-float-bound  low 'single-float nil)
                      ,(coerced-float-bound high 'single-float t))
        (double-float ,(coerced-float-bound  low 'double-float nil)
                      ,(coerced-float-bound high 'double-float t))
        #+long-float ,(error "stub: no long float support yet"))))

(macrolet ((define-float-format (f) `(!def-bounded-type ,f float ,f)))
  (define-float-format single-float)
  (define-float-format double-float))

(defun numeric-types-intersect (type1 type2)
  (declare (type numeric-type type1 type2))
  (let* ((class1 (numeric-type-class type1))
         (class2 (numeric-type-class type2))
         (complexp1 (numeric-type-complexp type1))
         (complexp2 (numeric-type-complexp type2))
         (format1 (numeric-type-format type1))
         (format2 (numeric-type-format type2))
         (low1 (numeric-type-low type1))
         (high1 (numeric-type-high type1))
         (low2 (numeric-type-low type2))
         (high2 (numeric-type-high type2)))
    ;; If one is complex and the other isn't, then they are disjoint.
    (cond ((not (or (eq complexp1 complexp2)
                    (null complexp1) (null complexp2)))
           nil)
          ;; If either type is a float, then the other must either be
          ;; specified to be a float or unspecified. Otherwise, they
          ;; are disjoint.
          ((and (eq class1 'float)
                (not (member class2 '(float nil)))) nil)
          ((and (eq class2 'float)
                (not (member class1 '(float nil)))) nil)
          ;; If the float formats are specified and different, the
          ;; types are disjoint.
          ((not (or (eq format1 format2) (null format1) (null format2)))
           nil)
          (t
           ;; Check the bounds. This is a bit odd because we must
           ;; always have the outer bound of the interval as the
           ;; second arg.
           (if (numeric-bound-test high1 high2 <= <)
               (or (and (numeric-bound-test low1 low2 >= >)
                        (numeric-bound-test* low1 high2 <= <))
                   (and (numeric-bound-test low2 low1 >= >)
                        (numeric-bound-test* low2 high1 <= <)))
               (or (and (numeric-bound-test* low2 high1 <= <)
                        (numeric-bound-test low2 low1 >= >))
                   (and (numeric-bound-test high2 high1 <= <)
                        (numeric-bound-test* high2 low1 >= >))))))))

;;; Take the numeric bound X and convert it into something that can be
;;; used as a bound in a numeric type with the specified CLASS and
;;; FORMAT. If UP-P is true, then we round up as needed, otherwise we
;;; round down. UP-P true implies that X is a lower bound, i.e. (N) > N.
;;;
;;; This is used by NUMERIC-TYPE-INTERSECTION to mash the bound into
;;; the appropriate type number. X may only be a float when CLASS is
;;; FLOAT.
;;;
;;; ### Note: it is possible for the coercion to a float to overflow
;;; or underflow. This happens when the bound doesn't fit in the
;;; specified format. In this case, we should really return the
;;; appropriate {Most | Least}-{Positive | Negative}-XXX-Float float
;;; of desired format. But these conditions aren't currently signalled
;;; in any useful way.
;;;
;;; Also, when converting an open rational bound into a float we
;;; should probably convert it to a closed bound of the closest float
;;; in the specified format. KLUDGE: In general, open float bounds are
;;; screwed up. -- (comment from original CMU CL)
(defun round-numeric-bound (x class format up-p)
  (if x
      (let ((cx (if (consp x) (car x) x)))
        (ecase class
          ((nil rational) x)
          (integer
           (if (and (consp x) (integerp cx))
               (if up-p (1+ cx) (1- cx))
               (if up-p (ceiling cx) (floor cx))))
          (float
           (aver format)
           (let ((res
                   (cond
                     ((and format (subtypep format 'double-float))
                      (if (sb-xc:<= most-negative-double-float cx most-positive-double-float)
                          (coerce cx format)
                          nil))
                     (t
                      (if (sb-xc:<= most-negative-single-float cx most-positive-single-float)
                          ;; FIXME: bug #389
                          (coerce cx (or format 'single-float))
                          nil)))))
             (if (and (consp x) res)
                 (list res)
                 res)))))
      nil))

;;; Handle the case of type intersection on two numeric types. We use
;;; TYPES-EQUAL-OR-INTERSECT to throw out the case of types with no
;;; intersection. If an attribute in TYPE1 is unspecified, then we use
;;; TYPE2's attribute, which must be at least as restrictive. If the
;;; types intersect, then the only attributes that can be specified
;;; and different are the class and the bounds.
;;;
;;; When the class differs, we use the more restrictive class. The
;;; only interesting case is RATIONAL/INTEGER, since RATIONAL includes
;;; INTEGER.
;;;
;;; We make the result lower (upper) bound the maximum (minimum) of
;;; the argument lower (upper) bounds. We convert the bounds into the
;;; appropriate numeric type before maximizing. This avoids possible
;;; confusion due to mixed-type comparisons (but I think the result is
;;; the same).
(define-type-method (number :simple-intersection2) (type1 type2)
  (declare (type numeric-type type1 type2))
  (if (numeric-types-intersect type1 type2)
      (let* ((class1 (numeric-type-class type1))
             (class2 (numeric-type-class type2))
             (class (ecase class1
                      ((nil) class2)
                      ((integer float) class1)
                      (rational (if (eq class2 'integer)
                                    'integer
                                    'rational))))
             (format (or (numeric-type-format type1)
                         (numeric-type-format type2)))
             (low1 (numeric-type-low type1))
             (high1 (numeric-type-high type1))
             (infinity1 (and (floatp low1) (float-infinity-p low1) (eql low1 high1)))
             (low2 (numeric-type-low type2))
             (high2 (numeric-type-high type2))
             (infinity2 (and (floatp low2) (float-infinity-p low2) (eql low2 high2))))
        (make-numeric-type
         :class class
         :format format
         :complexp (or (numeric-type-complexp type1)
                       (numeric-type-complexp type2))
         :low (cond (infinity1 low1)
                    (infinity2 low2)
                    (t (numeric-bound-max
                        (round-numeric-bound low1 class format t)
                        (round-numeric-bound low2 class format t)
                        > >= nil)))
         :high (cond (infinity1 high1)
                     (infinity2 high2)
                     (t (numeric-bound-max
                         (round-numeric-bound high1 class format nil)
                         (round-numeric-bound high2 class format nil)
                         < <= nil)))))
      *empty-type*))

;;; Given two float formats, return the one with more precision. If
;;; either one is null, return NIL.
(defun float-format-max (f1 f2)
  (when (and f1 f2)
    (dolist (f *float-formats* (error "bad float format: ~S" f1))
      (when (or (eq f f1) (eq f f2))
        (return f)))))

;;; Return the result of an operation on TYPE1 and TYPE2 according to
;;; the rules of numeric contagion. This is NUMBER, some float
;;; format (possibly complex) or RATIONAL or a UNION-TYPE of
;;; these. Due to rational canonicalization, there isn't much we can
;;; do here with integers or rational complex numbers.
;;;
;;; If either argument is not a NUMERIC-TYPE, then return NUMBER. This
;;; is useful mainly for allowing types that are technically numbers,
;;; but not a NUMERIC-TYPE.
(defun numeric-contagion (type1 type2 &key (rational t)
                                           unsigned)
  (cond ((and (numeric-type-p type1) (numeric-type-p type2))
         (let ((class1 (numeric-type-class type1))
               (class2 (numeric-type-class type2))
               (format1 (numeric-type-format type1))
               (format2 (numeric-type-format type2))
               (complexp1 (numeric-type-complexp type1))
               (complexp2 (numeric-type-complexp type2)))
           (cond ((eq class1 'float)
                  (make-numeric-type
                   :class 'float
                   :format (ecase class2
                             (float (float-format-max format1 format2))
                             ((integer rational) format1)
                             ((nil)
                              ;; A double-float with any real number is a
                              ;; double-float.
                              #-long-float
                              (if (eq format1 'double-float)
                                  'double-float
                                  nil)
                              ;; A long-float with any real number is a
                              ;; long-float.
                              #+long-float
                              (if (eq format1 'long-float)
                                  'long-float
                                  nil)))
                   :complexp (cond ((and (eq complexp1 :real)
                                         (eq complexp2 :real))
                                    :real)
                                   ((or (null complexp1) (null complexp2))
                                    nil)
                                   (t :complex))))
                 ((eq class2 'float) (numeric-contagion type2 type1))
                 ((and (eq complexp1 :real) (eq complexp2 :real))
                  (if (or rational
                          (or (neq class1 'integer)
                              (neq class2 'integer)))
                      (make-numeric-type
                       :class (and class1 class2 'rational)
                       :complexp :real)
                      (make-numeric-type
                       :class 'integer
                       :complexp :real
                       :low (and unsigned
                                 (typep (numeric-type-low type1) 'unsigned-byte)
                                 (typep (numeric-type-low type2) 'unsigned-byte)
                                 0))))
                 (t
                  (specifier-type 'number)))))
        ((eq type1 (specifier-type 'ratio))
         (numeric-contagion (specifier-type 'rational) type2))
        ((eq type2 (specifier-type 'ratio))
         (numeric-contagion type1 (specifier-type 'rational)))
        (t
         (flet ((try-union (a b)
                  (let (union)
                    (loop for type in (union-type-types a)
                          for contagion = (numeric-contagion type b :rational rational :unsigned unsigned)
                          do (setf union (if union
                                             (type-union union contagion)
                                             contagion))
                          until (eq union (specifier-type 'number)))
                    union)))
           (cond ((union-type-p type1)
                  (try-union type1 type2))
                 ((union-type-p type2)
                  (try-union type2 type1))
                 (t
                  (specifier-type 'number)))))))

;;;; array types

(define-type-class array :enumerable nil :might-contain-other-types nil)

;; All character-set types are enumerable, but it's not possible for
;; one to be TYPE= to a MEMBER type because (MEMBER #\x) is not
;; internally represented as a MEMBER type.  So in case it wasn't
;; clear already ENUMERABLE-P does not mean "possibly a MEMBER type in
;; the Lisp-theoretic sense", but means "could be implemented in SBCL
;; as a MEMBER type".
(define-type-class character-set :enumerable nil :might-contain-other-types nil)

(defun make-character-set-type (pairs)
  (unless pairs
    (return-from make-character-set-type *empty-type*))
  ;; aver that the cars of the list elements are sorted into increasing order
  (do ((p pairs (cdr p)))
      ((null (cdr p)))
    (aver (<= (the %char-code (caar p)) (the %char-code (caadr p)))))
  (let ((pairs
         (if (and (singleton-p pairs)
                  (eql (truly-the %char-code (caar pairs))
                       ;; only the CARs were checked above
                       (the %char-code (cdar pairs))))
             pairs ; don't need to preprocess the pairs
             (let (result)
                (do ((pairs pairs (cdr pairs)))
                    ((null pairs) (nreverse result))
                  (destructuring-bind (low . high) (car pairs)
                    (declare (%char-code low high))
                    (loop for (low1 . high1) in (cdr pairs)
                          if (<= (the %char-code low1) (1+ high))
                          do (progn (setf high (max high (the %char-code high1)))
                                    (setf pairs (cdr pairs)))
                          else do (return nil))
                    (cond
                      ((>= low char-code-limit))
                      ((< high 0))
                      (t (push (cons (max 0 low)
                                     (min high (1- char-code-limit)))
                               result)))))))))
    (unless (cdr pairs)
      (macrolet ((range (low high)
                   `(return-from make-character-set-type
                      (inline-cache-ctype
                       (!alloc-character-set-type (make-ctype-bits 'character-set)
                                                  '((,low . ,high)))
                       (character-set ((,low . ,high)))))))
        (let* ((pair (car pairs))
               (low (car pair))
               (high (cdr pair)))
          (cond ((eql high (1- char-code-limit))
                 (cond ((eql low 0)
                        (range 0 #.(1- char-code-limit)))
                       #+sb-unicode
                       ((eql low base-char-code-limit)
                        (range #.base-char-code-limit
                               #.(1- char-code-limit)))))
                #+sb-unicode
                ((and (eql low 0) (eql high (1- base-char-code-limit)))
                 (range 0 #.(1- base-char-code-limit)))))))
    (new-ctype character-set-type 0 pairs)))

(defun character-set-type-from-characters (characters)
  ;; Constructor asserts that pairs are properly sorted
  (make-character-set-type (mapcar (lambda (x)
                                     (let ((code (sb-xc:char-code x)))
                                       (cons code code)))
                                   (sort (delete-duplicates characters) #'<
                                         :key #'sb-xc:char-code))))

(declaim (ftype (sfunction (t &key (:complexp t)
                                   (:element-type t)
                                   (:specialized-element-type t))
                           ctype) make-array-type))
(defun make-array-type (dimensions &key (complexp :maybe) element-type
                                        (specialized-element-type *wild-type*))
  (%make-array-type dimensions complexp element-type specialized-element-type))

(define-type-method (array :simple-=) (type1 type2)
  (cond ((not (and (equal (array-type-dimensions type1)
                          (array-type-dimensions type2))
                   (eq (array-type-complexp type1)
                       (array-type-complexp type2))))
         (values nil t))
        ((or (unknown-type-p (array-type-element-type type1))
             (unknown-type-p (array-type-element-type type2)))
         (type= (array-type-element-type type1)
                (array-type-element-type type2)))
        (t
         ;; FIXME: I would think this can be strength-reduced to EQ
         (values (type= (array-type-specialized-element-type type1)
                        (array-type-specialized-element-type type2))
                 t))))

(define-type-method (array :negate) (type)
  ;; FIXME (and hint to PFD): we're vulnerable here to attacks of the
  ;; form "are (AND ARRAY (NOT (ARRAY T))) and (OR (ARRAY BIT) (ARRAY
  ;; NIL) (ARRAY CHAR) ...) equivalent?" -- CSR, 2003-12-10
  ;; A symptom of the aforementioned is that the following are not TYPE=
  ;;   (AND (VECTOR T) (NOT SIMPLE-ARRAY)) ; an ARRAY-TYPE
  ;;   (AND (VECTOR T) (NOT SIMPLE-VECTOR)) ; an INTERSECTION-TYPE
  ;; even though (VECTOR T) makes it so that the (NOT) clause in each can
  ;; only provide one additional bit of information: that the vector
  ;; is complex as opposed to simple. The rank and element-type are fixed.
  (if (and (eq (array-type-dimensions type) '*)
           (eq (array-type-complexp type) 't)
           (eq (array-type-element-type type) *wild-type*))
      ;; (NOT <hairy-array>) = either SIMPLE-ARRAY or (NOT ARRAY).
      ;; This is deliberately asymmetric - trying to say that NOT simple-array
      ;; equals hairy-array leads to infinite recursion.
      (type-union (make-array-type '* :complexp nil
                                   :element-type *wild-type*)
                  (make-negation-type
                         (make-array-type '* :element-type *wild-type*)))
      (make-negation-type type)))

(define-type-method (array :unparse) (flags type)
  (let* ((dims (array-type-dimensions type))
         ;; Compare the specialised element type and the
         ;; derived element type.  If the derived type
         ;; is so small that it jumps to a smaller upgraded
         ;; element type, use the specialised element type.
         ;;
         ;; This protects from unparsing
         ;;   (and (vector (or bit symbol))
         ;;        (vector (or bit character)))
         ;; i.e., the intersection of two T array types,
         ;; as a bit vector.
         (stype (array-type-specialized-element-type type))
         (dtype (array-type-element-type type))
         (utype (%upgraded-array-element-type dtype))
         (eltype (type-unparse flags
                                (if (type= stype utype)
                                     dtype
                                     stype)))
         (complexp (array-type-complexp type)))
    (cond ((eq dims '*)
           (if (eq eltype '*)
               (ecase complexp
                 ((t) '(and array (not simple-array)))
                 ((:maybe) 'array)
                 ((nil) 'simple-array))
               (ecase complexp
                 ((t) `(and (array ,eltype) (not simple-array)))
                 ((:maybe) `(array ,eltype))
                 ((nil) `(simple-array ,eltype)))))
          ((= (length dims) 1)
           (if complexp
               (let ((answer
                      (if (eq (car dims) '*)
                          (case eltype
                            (bit 'bit-vector)
                            ((base-char #-sb-unicode character) 'base-string)
                            (* 'vector)
                            (t `(vector ,eltype)))
                          (case eltype
                            (bit `(bit-vector ,(car dims)))
                            ((base-char #-sb-unicode character)
                             `(base-string ,(car dims)))
                            (t `(vector ,eltype ,(car dims)))))))
                 (if (eql complexp :maybe)
                     answer
                     `(and ,answer (not simple-array))))
               (if (eq (car dims) '*)
                   (case eltype
                     (bit 'simple-bit-vector)
                     ((base-char #-sb-unicode character) 'simple-base-string)
                     ((t) 'simple-vector)
                     (t `(simple-array ,eltype (*))))
                   (case eltype
                     (bit `(simple-bit-vector ,(car dims)))
                     ((base-char #-sb-unicode character)
                      `(simple-base-string ,(car dims)))
                     ((t) `(simple-vector ,(car dims)))
                     (t `(simple-array ,eltype ,dims))))))
          (t
           (ecase complexp
             ((t) `(and (array ,eltype ,dims) (not simple-array)))
             ((:maybe) `(array ,eltype ,dims))
             ((nil) `(simple-array ,eltype ,dims)))))))

(define-type-method (array :simple-subtypep) (type1 type2)
  (let ((dims1 (array-type-dimensions type1))
        (dims2 (array-type-dimensions type2))
        (complexp2 (array-type-complexp type2)))
    (cond (;; not subtypep unless dimensions are compatible
           (not (or (eq dims2 '*)
                    (and (not (eq dims1 '*))
                         ;; (sbcl-0.6.4 has trouble figuring out that
                         ;; DIMS1 and DIMS2 must be lists at this
                         ;; point, and knowing that is important to
                         ;; compiling EVERY efficiently.)
                         (= (length (the list dims1))
                            (length (the list dims2)))
                         (every (lambda (x y)
                                  (or (eq y '*) (eql x y)))
                                (the list dims1)
                                (the list dims2)))))
           (values nil t))
          ;; not subtypep unless complexness is compatible
          ((not (or (eq complexp2 :maybe)
                    (eq (array-type-complexp type1) complexp2)))
           (values nil t))
          ;; Since we didn't fail any of the tests above, we win
          ;; if the TYPE2 element type is wild.
          ((eq (array-type-element-type type2) *wild-type*)
           (values t t))
          (;; Since we didn't match any of the special cases above, if
           ;; either element type is unknown we can only give a good
           ;; answer if they are the same.
           (or (unknown-type-p (array-type-element-type type1))
               (unknown-type-p (array-type-element-type type2)))
           (if (type= (array-type-element-type type1)
                      (array-type-element-type type2))
               (values t t)
               (values nil nil)))
          (;; Otherwise, the subtype relationship holds iff the
           ;; types are equal, and they're equal iff the specialized
           ;; element types are identical.
           t
           (values (type= (array-type-specialized-element-type type1)
                          (array-type-specialized-element-type type2))
                   t)))))

(!define-superclasses array ((vector vector) (array)) !cold-init-forms)

(defun array-types-intersect (type1 type2)
  (declare (type array-type type1 type2))
  (let ((dims1 (array-type-dimensions type1))
        (dims2 (array-type-dimensions type2))
        (complexp1 (array-type-complexp type1))
        (complexp2 (array-type-complexp type2)))
    ;; See whether dimensions are compatible.
    (cond ((not (or (eq dims1 '*) (eq dims2 '*)
                    (and (= (length dims1) (length dims2))
                         (every (lambda (x y)
                                  (or (eq x '*) (eq y '*) (= x y)))
                                dims1 dims2))))
           (values nil t))
          ;; See whether complexpness is compatible.
          ((not (or (eq complexp1 :maybe)
                    (eq complexp2 :maybe)
                    (eq complexp1 complexp2)))
           (values nil t))
          ;; Old comment:
          ;;
          ;;   If either element type is wild, then they intersect.
          ;;   Otherwise, the types must be identical.
          ;;
          ;; FIXME: There seems to have been a fair amount of
          ;; confusion about the distinction between requested element
          ;; type and specialized element type; here is one of
          ;; them. If we request an array to hold objects of an
          ;; unknown type, we can do no better than represent that
          ;; type as an array specialized on wild-type.  We keep the
          ;; requested element-type in the -ELEMENT-TYPE slot, and
          ;; *WILD-TYPE* in the -SPECIALIZED-ELEMENT-TYPE.  So, here,
          ;; we must test for the SPECIALIZED slot being *WILD-TYPE*,
          ;; not just the ELEMENT-TYPE slot.  Maybe the return value
          ;; in that specific case should be T, NIL?  Or maybe this
          ;; function should really be called
          ;; ARRAY-TYPES-COULD-POSSIBLY-INTERSECT?  In any case, this
          ;; was responsible for bug #123, and this whole issue could
          ;; do with a rethink and/or a rewrite.  -- CSR, 2002-08-21
          ((or (eq (array-type-specialized-element-type type1) *wild-type*)
               (eq (array-type-specialized-element-type type2) *wild-type*)
               (type= (array-type-specialized-element-type type1)
                      (array-type-specialized-element-type type2)))

           (values t t))
          (t
           (values nil t)))))

(defun unite-array-types-complexp (type1 type2)
  (let ((complexp1 (array-type-complexp type1))
        (complexp2 (array-type-complexp type2)))
    (cond
      ((eq complexp1 complexp2)
       ;; both types are the same complexp-ity
       (values complexp1 t))
      ((eq complexp1 :maybe)
       ;; type1 is wild-complexp
       (values :maybe type1))
      ((eq complexp2 :maybe)
       ;; type2 is wild-complexp
       (values :maybe type2))
      (t
       ;; both types partition the complexp-space
       (values :maybe nil)))))

(defun unite-array-types-dimensions (type1 type2)
  (let ((dims1 (array-type-dimensions type1))
        (dims2 (array-type-dimensions type2)))
    (cond ((equal dims1 dims2)
           ;; both types are same dimensionality
           (values dims1 t))
          ((eq dims1 '*)
           ;; type1 is wild-dimensions
           (values '* type1))
          ((eq dims2 '*)
           ;; type2 is wild-dimensions
           (values '* type2))
          ((not (= (length dims1) (length dims2)))
           ;; types have different number of dimensions
           (values :incompatible nil))
          (t
           ;; we need to check on a per-dimension basis
           (let* ((supertype1 t)
                  (supertype2 t)
                  (compatible t)
                  (result (mapcar (lambda (dim1 dim2)
                                    (cond
                                      ((equal dim1 dim2)
                                       dim1)
                                      ((eq dim1 '*)
                                       (setf supertype2 nil)
                                       '*)
                                      ((eq dim2 '*)
                                       (setf supertype1 nil)
                                       '*)
                                      (t
                                       (setf compatible nil))))
                                  dims1 dims2)))
             (cond
               ((or (not compatible)
                    (and (not supertype1)
                         (not supertype2)))
                (values :incompatible nil))
               ((and supertype1 supertype2)
                (values result supertype1))
               (t
                (values result (if supertype1 type1 type2)))))))))

(defun unite-array-types-element-types (type1 type2)
  ;; FIXME: We'd love to be able to unite the full set of specialized
  ;; array element types up to *wild-type*, but :simple-union2 is
  ;; performed pairwise, so we don't have a good hook for it and our
  ;; representation doesn't allow us to easily detect the situation
  ;; anyway.
  ;; But see SIMPLIFY-ARRAY-UNIONS which is able to do something like that.
  (let* ((eltype1 (array-type-element-type type1))
         (eltype2 (array-type-element-type type2))
         (stype1 (array-type-specialized-element-type type1))
         (stype2 (array-type-specialized-element-type type2))
         (wild1 (eq eltype1 *wild-type*))
         (wild2 (eq eltype2 *wild-type*)))
    (cond
      ((and wild1 wild2)
       (values eltype1 stype1 t))
      (wild1
       (values eltype1 stype1 type1))
      (wild2
       (values eltype2 stype2 type2))
      ((type= eltype1 eltype2)
       (values eltype1 stype1 t))
      ((not (type= stype1 stype2))
       ;; non-wild types that don't share UAET don't unite
       (values :incompatible nil nil))
      ((csubtypep eltype1 eltype2)
       (values eltype2 stype2 type2))
      ((csubtypep eltype2 eltype1)
       (values eltype1 stype1 type1))
      (t
       (values :incompatible nil nil)))))

(defun unite-array-types-supertypes-compatible-p (&rest supertypes)
  ;; supertypes are compatible if they are all T, if there is a single
  ;; NIL and all the rest are T, or if all non-T supertypes are the
  ;; same and not NIL.
  (let ((interesting-supertypes
         (remove t supertypes)))
    (or (not interesting-supertypes)
        (equal interesting-supertypes '(nil))
        ;; supertypes are (OR BOOLEAN ARRAY-TYPE), so...
        (typep (remove-duplicates interesting-supertypes)
               '(cons array-type null)))))

(define-type-method (array :simple-union2) (type1 type2)
  (multiple-value-bind
        (result-eltype result-stype eltype-supertype)
      (unite-array-types-element-types type1 type2)
    (multiple-value-bind
          (result-complexp complexp-supertype)
        (unite-array-types-complexp type1 type2)
      (multiple-value-bind
            (result-dimensions dimensions-supertype)
          (unite-array-types-dimensions type1 type2)
        (when (and (not (eq result-dimensions :incompatible))
                   (not (eq result-eltype :incompatible))
                   (unite-array-types-supertypes-compatible-p
                    eltype-supertype complexp-supertype dimensions-supertype))
          (make-array-type result-dimensions
           :complexp result-complexp
           :element-type result-eltype
           :specialized-element-type result-stype))))))

(define-type-method (array :simple-intersection2) (type1 type2)
  (declare (type array-type type1 type2))
  (if (array-types-intersect type1 type2)
      (let ((dims1 (array-type-dimensions type1))
            (dims2 (array-type-dimensions type2))
            (complexp1 (array-type-complexp type1))
            (complexp2 (array-type-complexp type2))
            (eltype1 (array-type-element-type type1))
            (eltype2 (array-type-element-type type2))
            (stype1 (array-type-specialized-element-type type1))
            (stype2 (array-type-specialized-element-type type2)))
        (make-array-type (cond ((eq dims1 '*) dims2)
                               ((eq dims2 '*) dims1)
                               (t
                                (mapcar (lambda (x y) (if (eq x '*) y x))
                                        dims1 dims2)))
         :complexp (if (eq complexp1 :maybe) complexp2 complexp1)
         :element-type (cond
                         ((eq eltype1 *wild-type*) eltype2)
                         ((eq eltype2 *wild-type*) eltype1)
                         (t (type-intersection eltype1 eltype2)))
         :specialized-element-type (cond
                                     ((eq stype1 *wild-type*) stype2)
                                     ((eq stype2 *wild-type*) stype1)
                                     (t
                                      (aver (type= stype1 stype2))
                                      stype1))))
      *empty-type*))

;;; Check a supplied dimension list to determine whether it is legal,
;;; and return it in canonical form (as either '* or a list).
(defun canonical-array-dimensions (dims)
  (typecase dims
    ((member *) dims)
    (integer
     (when (minusp dims)
       (error "Arrays can't have a negative number of dimensions: ~S" dims))
     (when (>= dims array-rank-limit)
       (error "array type with too many dimensions: ~S" dims))
     (make-list dims :initial-element '*))
    (list
     (when (>= (length dims) array-rank-limit)
       (error "array type with too many dimensions: ~S" dims))
     (dolist (dim dims)
       (unless (eq dim '*)
         (unless (and (integerp dim)
                      (>= dim 0)
                      (< dim array-dimension-limit))
           (error "bad dimension in array type: ~S" dim))))
     dims)
    (t
     (error "Array dimensions is not a list, integer or *:~%  ~S" dims))))

;;;; MEMBER types


(define-type-class member :enumerable t
                    :might-contain-other-types nil)

;; Return possibly a union of a MEMBER type and a NUMERIC type,
;; or just one or the other, or *EMPTY-TYPE* depending on what's in the XSET
;; and the FP-ZEROES. XSET must not contains characters or real numbers.
;; MEMBER types go into one of three hash containers:
;;  - *EQL-TYPE-CACHE* holds singleton types. A weak hash-table suffices for this.
;;  - *MEMBER-TYPE-HASHSET* holds types whose members are {NUMBER|CHARACTER|SYMBOL}.
;;    Intrinsically each element has a stable hash, making it possible to
;;    hash-cons XSETs without complications for EQ-comparable keys.
;;  - *MEMBER/EQ-TYPE-HASHSET* is the general case, allowing a mixture of objects
;;;   hashed by content-dependent hash and/or pseudorandom opaque hash.
(defun make-member-type (xset fp-zeroes)
  ;; if we have a pair of zeros (e.g. 0.0d0 and -0.0d0), then we can
  ;; canonicalize to (DOUBLE-FLOAT 0.0d0 0.0d0), because numeric
  ;; ranges are compared by arithmetic operators (while MEMBERship is
  ;; compared by EQL).  -- CSR, 2003-04-23
  (declare (sb-c::tlab :system))
  (map-xset (lambda (elt)
              (when (or (characterp elt) (realp elt))
                (bug "MEMBER type contains ~S" elt)))
            xset)
  (let ((presence 0)
        (unpaired nil)
        (float-types nil))
    (cond
     (fp-zeroes ; avoid doing two passes of nothing
      (dotimes (pass 2)
        (dolist (z fp-zeroes)
          (let ((sign (float-sign-bit z))
                (pair-idx
                  (etypecase z
                    (single-float 0)
                    (double-float 2
                    #+long-float (long-float 4)))))
            (cond ((= pass 0) ; first pass: track presence of +-0 of each float format
                   (setf (ldb (byte 1 (+ pair-idx sign)) presence) 1))
                  ;; second pass: if not both signs present, then it's an unpaired zero
                  ((/= (ldb (byte 2 pair-idx) presence) #b11)
                   (push z unpaired))
                  ((= sign 0) ; take the +0 as canonical when both +-0 are present
                   (push (make-numeric-type :complexp :real :class 'float :low z :high z
                                            :format (float-format-name z))
                         float-types)))))))
     ((and (= (xset-count xset) 1)
           (eq (car (xset-members xset)) nil))
      ;; Bypass the hashset for type NULL because it's so important
      (return-from make-member-type
        (inline-cache-ctype (!alloc-member-type (make-ctype-bits 'member)
                                                (!new-xset '(nil) 1)
                                                '())
                            null))))
    (let* ((count (+ (length unpaired) (xset-count xset)))
           (member-type
            (unless (= count 0)
              (dx-let ((temp (!alloc-member-type (ctype-class-bits 'member)
                                                 xset unpaired)))
                (cond
                  ((= count 1)
                   (let ((container *eql-type-cache*)
                         (key (first (or unpaired (xset-data xset)))))
                     (with-system-mutex ((hash-table-lock container))
                       ;; This is like ENSURE-GETHASH but it potentially copies the key
                       (or (gethash key container)
                           (let ((copy (copy-ctype temp)))
                             ;; re-fetch KEY from XSET in case it was copied.
                             ;; hope no off-heap pointers buried within KEY.
                             (setf (gethash (first (member-type-members copy)) container)
                                   copy))))))
                  ((xset-every (lambda (x) (typep x '(or symbol number character))) xset)
                   (hashset-insert-if-absent *member-type-hashset* temp #'copy-ctype))
                  (t
                   (binding*
                       ((container *member/eq-type-hashset*)
                        ((result foundp)
                         (with-system-mutex (*xset-mutex*)
                           (xset-generate-stable-hashes xset)
                           (acond ((hashset-find container temp)
                                   (xset-delete-stable-hashes xset) ; inside the mutex scope
                                   (values it t))
                                  (t
                                   (values (hashset-insert container (copy-ctype temp))
                                           nil))))))
                     (unless foundp ; "use" the var binding if #+sb-xc-host
                       #-sb-xc-host ; attach finalizer (outside the mutex scope)
                       (let ((xset (member-type-xset result))) ; in case XSET was copied
                         (finalize
                          result (lambda ()
                                   (with-system-mutex (*xset-mutex*)
                                     (xset-delete-stable-hashes xset))))))
                     result)))))))
      ;; The actual member-type contains the XSET (with no FP zeroes),
      ;; and a list of unpaired zeroes.
      (if (not float-types)
          (or member-type *empty-type*)
          (let ((types (if member-type
                           (cons member-type float-types)
                           float-types)))
            (if (cdr types)
                (make-union-type t types)
                (car types)))))))

(defun member-type-size (type)
  (+ (length (member-type-fp-zeroes type))
     (xset-count (member-type-xset type))))

(defun member-type-member-p (x type)
  (if (fp-zero-p x)
      (and (member x (member-type-fp-zeroes type)) t)
      (xset-member-p x (member-type-xset type))))

(defun mapcar-member-type-members (function type)
  (declare (function function))
  (collect ((results))
    (map-xset (lambda (x)
                (results (funcall function x)))
              (member-type-xset type))
    (dolist (zero (member-type-fp-zeroes type))
      (results (funcall function zero)))
    (results)))

(defun mapc-member-type-members (function type)
  (declare (function function))
  (map-xset function (member-type-xset type))
  (dolist (zero (member-type-fp-zeroes type))
    (funcall function zero)))

(defun member-type-members (type)
  (append (member-type-fp-zeroes type)
          (xset-members (member-type-xset type))))

(define-type-method (member :negate) (type)
  (let ((xset (member-type-xset type))
        (fp-zeroes (member-type-fp-zeroes type)))
    (if fp-zeroes
        ;; Hairy case, which needs to do a bit of float type
        ;; canonicalization.
        (apply #'type-intersection
               (if (xset-empty-p xset)
                   *universal-type*
                   (make-negation-type (make-member-type xset nil)))
               (mapcar
                (lambda (x)
                  (let* ((opposite (sb-xc:- x))
                         (type (ctype-of opposite)))
                    (type-union
                     (make-negation-type
                      (modified-numeric-type type :low nil :high nil))
                     (modified-numeric-type type :low nil :high (list opposite))
                     (make-eql-type opposite)
                     (modified-numeric-type type :low (list opposite) :high nil))))
                fp-zeroes))
        ;; Easy case
        (make-negation-type type))))

(define-type-method (member :unparse) (flags type)
  (cond ((eq type (specifier-type 'null)) 'null) ; NULL type is EQ-comparable
        ((eq type (specifier-type 'boolean)) 'boolean) ; so is BOOLEAN
        (t `(member ,@(member-type-members type)))))

(define-type-method (member :singleton-p) (type)
  (if (eql 1 (member-type-size type))
      (values t (first (member-type-members type)))
      (values nil nil)))

(define-type-method (member :simple-subtypep) (type1 type2)
   (values (and (xset-subset-p (member-type-xset type1)
                               (member-type-xset type2))
                (subsetp (member-type-fp-zeroes type1)
                         (member-type-fp-zeroes type2)))
           t))

(define-type-method (member :complex-subtypep-arg1) (type1 type2)
  (block punt
    (mapc-member-type-members
     (lambda (elt)
       (multiple-value-bind (ok surep) (ctypep elt type2)
         (unless surep
           (return-from punt (values nil nil)))
         (unless ok
           (return-from punt (values nil t)))))
     type1)
    (values t t)))

;;; We punt if the odd type is enumerable and intersects with the
;;; MEMBER type. If not enumerable, then it is definitely not a
;;; subtype of the MEMBER type.
(define-type-method (member :complex-subtypep-arg2) (type1 type2)
  (cond ((not (type-enumerable type1)) (values nil t))
        ((types-equal-or-intersect type1 type2)
         (invoke-complex-subtypep-arg1-method type1 type2))
        (t (values nil t))))

(define-type-method (member :simple-intersection2) (type1 type2)
  (make-member-type (xset-intersection (member-type-xset type1)
                                       (member-type-xset type2))
                    (intersection (member-type-fp-zeroes type1)
                                  (member-type-fp-zeroes type2))))

(define-type-method (member :complex-intersection2) (type1 type2)
  (block punt
    (let ((xset (alloc-xset))
          (fp-zeroes nil))
      (mapc-member-type-members
       (lambda (member)
         (multiple-value-bind (ok sure) (ctypep member type1)
           (unless sure
             (return-from punt nil))
           (when ok
             (if (fp-zero-p member)
                 (pushnew member fp-zeroes)
                 (add-to-xset member xset)))))
       type2)
      (if (and (xset-empty-p xset) (not fp-zeroes))
          *empty-type*
          (make-member-type xset fp-zeroes)))))

;;; We don't need a :COMPLEX-UNION2, since the only interesting case is
;;; a union type, and the member/union interaction is handled by the
;;; union type method.
(define-type-method (member :simple-union2) (type1 type2)
  (make-member-type (xset-union (member-type-xset type1)
                                (member-type-xset type2))
                    (union (member-type-fp-zeroes type1)
                           (member-type-fp-zeroes type2))))

(define-type-method (member :complex-=) (type1 type2)
  (if (type-enumerable type1)
      (multiple-value-bind (val win) (csubtypep type2 type1)
        (if (or val (not win))
            (values nil nil)
            (values nil t)))
      (values nil t)))

(def-type-translator member :list (&rest members)
  ;; "* may appear as an argument to a MEMBER type specifier, but it indicates the
  ;;  literal symbol *, and does not represent an unspecified value."
  (if members
      (let ((xset (alloc-xset)) fp-zeros other-reals characters)
        ;; Calling REMOVE-DUPLICATES up front as used to be done is wasteful because the XSET can't
        ;; have dups in it. Elements that don't go in the XSET have to be de-duplicated.
        ;; There are at most 4 fp-zeros, so calling PUSHNEW is fine. For the rest, we can suppose
        ;; that DELETE-DUPLICATES is as good as it gets. (It could/should use a hash-table above
        ;; a cetain length input, but does not)
        (dolist (m members)
          (typecase m
            (character (push m characters))
            (real (if (fp-zero-p m) (pushnew m fp-zeros) (push m other-reals)))
            (t (add-to-xset m xset))))
        (apply #'type-union
               (make-member-type xset fp-zeros)
               (character-set-type-from-characters characters)
               (mapcar #'ctype-of-number (delete-duplicates other-reals))))
      *empty-type*))
(defun make-eql-type (elt)
  ;; Start by looking in the hash-table, there's no reason not to.
  ;; i.e. provided that ELT is one that should go in the hash-table, then the key
  ;; is not a DX instance of the type, unlike for most CTYPES.
  (or (let ((table *eql-type-cache*))
        (with-system-mutex ((hash-table-lock table)) (gethash elt table)))
      ;; It would be less messy to just call the parser for MEMBER, but there's no way
      ;; to prevent it from consing. It always calls REMOVE-DUPLICATES on its input,
      ;; and further builds up fresh data lists for the constructor(s).
      (typecase elt
        (character
         ;; just checking an expectation of self-build here, no real reason to prohibit
         #+sb-xc-host (bug "Unexpected singleton character type")
         (let* ((codepoint (sb-xc:char-code elt))
                (pairs (list (cons codepoint codepoint))))
           ;; PAIRS will get copied if needed, but not for the host
           #-sb-xc-host (declare (dynamic-extent pairs))
           (make-character-set-type pairs)))
        (real
         (unless (fp-zero-p elt)
           ;; we do see singleton fp zeros in self-build but not other floats
           #+sb-xc-host (bug "Unexpected singleton REAL type")
           ;; This is a little redundant with CTYPE-OF-NUMBER,
           ;; but imho easier to understand.
           (multiple-value-bind (class format)
               (typecase elt
                 (float (values 'float (float-format-name elt)))
                 (ratio 'rational)
                 (t 'integer))
             (make-numeric-type :class class :format format :low elt :high elt)))))
      ;; The thing is definitely implemented as a MEMBER type. Just a question of
      ;; whether to put ELT in the XSET.
      (multiple-value-bind (xset fp-zeros)
          (if (realp elt) ; is a floating-point zero
              (values (load-time-value (alloc-xset) t) ; an always-empty XSET
                      (list elt))
              (let ((xset (alloc-xset)))
                (add-to-xset elt xset)
                (values xset nil)))
        (make-member-type xset fp-zeros))))

;;;; intersection types
;;;;
;;;; Until version 0.6.10.6, SBCL followed the original CMU CL approach
;;;; of punting on all AND types, not just the unreasonably complicated
;;;; ones. The change was motivated by trying to get the KEYWORD type
;;;; to behave sensibly:
;;;;    ;; reasonable definition
;;;;    (DEFTYPE KEYWORD () '(AND SYMBOL (SATISFIES KEYWORDP)))
;;;;    ;; reasonable behavior
;;;;    (AVER (SUBTYPEP 'KEYWORD 'SYMBOL))
;;;; Without understanding a little about the semantics of AND, we'd
;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL and, for entirely
;;;; parallel reasons, (SUBTYPEP 'RATIO 'NUMBER)=>NIL,NIL. That's
;;;; not so good..)
;;;;
;;;; We still follow the example of CMU CL to some extent, by punting
;;;; (to the opaque HAIRY-TYPE) on sufficiently complicated types
;;;; involving AND.

(define-type-method (intersection :negate) (type)
  (%type-union
   (mapcar #'type-negation (intersection-type-types type))))

;;; A few intersection types have special names. The others just get
;;; mechanically unparsed.
(define-type-method (intersection :unparse) (flags type)
  (or (cl-std-intersection-type-p type)
      `(and ,@(type-unparse flags (intersection-type-types type)))))

(define-type-method (intersection :singleton-p) (type)
  (loop for constituent in (intersection-type-types type)
        do
        (multiple-value-bind (single value) (type-singleton-p constituent)
          (when single
            (return (values single value))))
        finally (return (values nil nil))))

;;; shared machinery for type equality: true if every type in the set
;;; TYPES1 matches a type in the set TYPES2 and vice versa
(defun type=-set (types1 types2)
  (flet ((type<=-set (x y)
           (declare (type list x y))
           (every/type (lambda (x y-element)
                         (any/type #'type= y-element x))
                       x y)))
    (and/type (type<=-set types1 types2)
              (type<=-set types2 types1))))

;;; Two intersection types are equal if their subtypes are equal sets.
;;;
;;; FIXME: Might it be better to use
;;;   (AND (SUBTYPEP X Y) (SUBTYPEP Y X))
;;; instead, since SUBTYPEP is the usual relationship that we care
;;; most about, so it would be good to leverage any ingenuity there
;;; in this more obscure method?
;;;
;;; Possibly yes, but then the SUBTYPEP methods would have to be
;;; rewritten not to use TYPE= (see the discussion around UNION
;;; :SIMPLE-=)
(define-type-method (intersection :simple-=) (type1 type2)
  (type=-set (intersection-type-types type1)
             (intersection-type-types type2)))

(define-type-method (intersection :complex-=) (type1 type2)
  (let ((seen-uncertain nil))
    (dolist (itype (intersection-type-types type2)
             (if seen-uncertain
                 (values nil nil)
                 (invoke-complex-=-other-method type1 type2)))
      (let ((trial-intersection (type-intersection2 type1 itype)))
        (if (null trial-intersection)
            (setq seen-uncertain (type-might-contain-other-types-p itype))
            ;; C != (Ai n Aj...) if (C n Ai) < C.
            ;;
            ;; (CSUBTYPEP (AND C Ai) C) is T, T by construction.
            ;; We ask (SUBTYPEP C (AND C Ai)):
            ;;
            ;; T  , T  : OK, continue -- C = (AND C Ai)
            ;; NIL, T  : return early -- C > (AND C Ai)
            ;; NIL, NIL: don't know!  If we get to the end, return NIL, NIL, but
            ;;           give other types in the intersection a chance to return
            ;;           early.
            (multiple-value-bind (subtype certain?)
                (csubtypep type1 trial-intersection)
              (cond
                ((not certain?) (setq seen-uncertain t))
                ((not subtype) (return (values nil t))))))))))

(defun %intersection-complex-subtypep-arg1 (type1 type2)
  (type= type1 (type-intersection type1 type2)))

(defun %intersection-simple-subtypep (type1 type2)
  (every/type #'%intersection-complex-subtypep-arg1
              type1
              (intersection-type-types type2)))

(define-type-method (intersection :simple-subtypep) (type1 type2)
  (%intersection-simple-subtypep type1 type2))

(define-type-method (intersection :complex-subtypep-arg1) (type1 type2)
  (%intersection-complex-subtypep-arg1 type1 type2))

(defun %intersection-complex-subtypep-arg2 (type1 type2)
  (every/type #'csubtypep type1 (intersection-type-types type2)))

(define-type-method (intersection :complex-subtypep-arg2) (type1 type2)
  (%intersection-complex-subtypep-arg2 type1 type2))

;;; FIXME: This will look eeriely familiar to readers of the UNION
;;; :SIMPLE-INTERSECTION2 :COMPLEX-INTERSECTION2 method.  That's
;;; because it was generated by cut'n'paste methods.  Given that
;;; intersections and unions have all sorts of symmetries known to
;;; mathematics, it shouldn't be beyond the ken of some programmers to
;;; reflect those symmetries in code in a way that ties them together
;;; more strongly than having two independent near-copies :-/
(define-type-method (intersection :simple-union2 :complex-union2)
                     (type1 type2)
  ;; Within this method, type2 is guaranteed to be an intersection
  ;; type:
  (aver (intersection-type-p type2))
  ;; Make sure to call only the applicable methods...
  (cond ((and (intersection-type-p type1)
              (%intersection-simple-subtypep type1 type2)) type2)
        ((and (intersection-type-p type1)
              (%intersection-simple-subtypep type2 type1)) type1)
        ((and (not (intersection-type-p type1))
              (%intersection-complex-subtypep-arg2 type1 type2))
         type2)
        ((and (not (intersection-type-p type1))
              (%intersection-complex-subtypep-arg1 type2 type1))
         type1)
        ;; KLUDGE: This special (and somewhat hairy) magic is required
        ;; to deal with the RATIONAL/INTEGER special case.  The UNION
        ;; of (INTEGER * -1) and (AND (RATIONAL * -1/2) (NOT INTEGER))
        ;; should be (RATIONAL * -1/2) -- CSR, 2003-02-28
        ((and (csubtypep type2 (specifier-type 'ratio))
              (numeric-type-p type1)
              (csubtypep type1 (specifier-type 'integer))
              (csubtypep type2
                         (make-numeric-type
                          :class 'rational
                          :complexp :real
                          :low (if (null (numeric-type-low type1))
                                   nil
                                   (list (1- (numeric-type-low type1))))
                          :high (if (null (numeric-type-high type1))
                                    nil
                                    (list (1+ (numeric-type-high type1)))))))
         (let* ((intersected (intersection-type-types type2))
                (remaining   (remove (specifier-type '(not integer))
                                     intersected
                                     :test #'type=)))
           (and (not (equal intersected remaining))
                (type-union type1 (%type-intersection remaining)))))
        (t
         (let ((accumulator *universal-type*))
           (do ((t2s (intersection-type-types type2) (cdr t2s)))
               ((null t2s) accumulator)
             (let ((union (type-union type1 (car t2s))))
               (when (union-type-p union)
                 ;; we have to give up here -- there are all sorts of
                 ;; ordering worries, but it's better than before.
                 ;; Doing exactly the same as in the UNION
                 ;; :SIMPLE/:COMPLEX-INTERSECTION2 method causes stack
                 ;; overflow with the mutual recursion never bottoming
                 ;; out.
                 (if (and (eq accumulator *universal-type*)
                          (null (cdr t2s)))
                     ;; KLUDGE: if we get here, we have a partially
                     ;; simplified result.  While this isn't by any
                     ;; means a universal simplification, including
                     ;; this logic here means that we can get (OR
                     ;; KEYWORD (NOT KEYWORD)) canonicalized to T.
                     (return union)
                     (return nil)))
               (setf accumulator
                     (type-intersection accumulator union))))))))

(def-type-translator and :list ((:context context) &rest type-specifiers)
  ;; "* is not permitted as an argument to the AND type specifier."
  (%type-intersection (mapcar (lambda (x) (specifier-type x context 'and))
                              type-specifiers)))

;;;; union types

(define-type-class union
                    :enumerable #'compound-type-enumerable
                    :might-contain-other-types t)

(define-type-method (union :negate) (type)
  (declare (type ctype type))
  (%type-intersection (mapcar #'type-negation (union-type-types type))))

;;; Unlike ARRAY-TYPE-DIMENSIONS this handles union types, which
;;; includes the type STRING.
(defun ctype-array-dimensions (type)
  (labels ((process-compound-type (types)
             (let (dimensions)
               (dolist (type types)
                 (unless (or (hairy-type-p type)
                             (negation-type-p type))
                   (let ((current-dimensions (determine type)))
                     (cond ((eq current-dimensions '*)
                            (return-from ctype-array-dimensions '*))
                           ((and dimensions
                                 (not (equal current-dimensions dimensions)))
                            (if (= (length dimensions)
                                   (length current-dimensions))
                                (setf dimensions
                                      (loop for dimension in dimensions
                                            for current-dimension in current-dimensions
                                            collect (if (eql dimension current-dimension)
                                                        dimension
                                                        '*)))
                                (return-from ctype-array-dimensions '*)))
                           (t

                            (setf dimensions current-dimensions))))))
               dimensions))
           (determine (type)
             (etypecase type
               (array-type
                (array-type-dimensions type))
               (union-type
                (process-compound-type (union-type-types type)))
               (member-type
                (process-compound-type
                 (mapcar #'ctype-of (member-type-members type))))
               (intersection-type
                (process-compound-type (intersection-type-types type))))))
    (determine type)))

(defun ctype-array-union-dimensions (type)
  (if (union-type-p type)
      (loop with dims
            for type in (union-type-types type)
            for dim = (ctype-array-dimensions type)
            do
            (when (eq dim '*)
              (return '(*)))
            (pushnew dim dims :test #'equal)
            finally (return dims))
      (list (ctype-array-dimensions type))))

(defun ctype-array-specialized-element-types (type)
  (let (types)
    (labels ((process-compound-type (types)
               (loop for type in types
                     unless (or (hairy-type-p type)
                                (negation-type-p type))
                     do (determine type)))
             (determine (type)
               (etypecase type
                 (array-type
                  (when (eq (array-type-specialized-element-type type) *wild-type*)
                    (return-from ctype-array-specialized-element-types
                      *wild-type*))
                  (pushnew (array-type-specialized-element-type type)
                           types :test #'type=))
                 (union-type
                  (process-compound-type (union-type-types type)))
                 (intersection-type
                  (process-compound-type (intersection-type-types type)))
                 (member-type
                  (process-compound-type
                   (mapcar #'ctype-of (member-type-members type)))))))
      (determine type))
    types))

(defun ctype-array-any-specialization-p (type)
  (labels ((process-compound-type (types)
             (loop for type in types
                   unless (or (hairy-type-p type)
                              (negation-type-p type))
                   do (determine type)))
           (determine (type)
             (typecase type
               (array-type
                (unless (eq (array-type-element-type type) *wild-type*)
                  (return-from ctype-array-any-specialization-p t)))
               (union-type
                (process-compound-type (union-type-types type)))
               (intersection-type
                (process-compound-type (intersection-type-types type))))))
    (determine type)))

;;; Union unparsing involves looking for certain important type atoms in our
;;; internal representation - a/k/a "interned types" - those which have a unique
;;; object that models them; and then deciding whether some conjunction of
;;; particular atoms unparses to a prettier symbolic type.
(eval-when (:compile-toplevel :load-toplevel :execute)
  (defparameter *special-union-types*
    ;; This is order-sensitive. Prefer to recognize SEQUENCE
    ;; and extract 4 components (NULL,CONS,VECTOR,EXTENDED-SEQUENCE)
    ;; before considering LIST and extracting 2, etc.
    '(sequence list real float complex bignum)))

(define-type-method (union :unparse) (flags type)
  ;; This logic diverges between +/- sb-xc-host because the machinery
  ;; to parse types is obviously not usable here during make-host-1,
  ;; so the macro has to generate code that is lazier about parsing.
  (collect ((recognized))
    (let ((remainder (copy-list (union-type-types type))))
      #+sb-xc-host
      ;; Try to recognize each special type in order.
      ;; Don't use SUBTYPEP here; compare atoms instead. We're not trying
      ;; to answer complicated questions - only see whether the argument TYPE
      ;; contains (at least) each of the exact same things in SPECIAL.
      (dolist (special *special-union-types*)
        (let ((parts (union-type-types (specifier-type special))))
          (when (every (lambda (part) (memq part remainder)) parts)
            ;; Remove the parts from the remainder
            (dolist (part parts) (setq remainder (delq1 part remainder)))
            (recognized special)))) ; add to the output
      #-sb-xc-host
      (macrolet
          ((generator ()
             (let* ((constituent-types
                     (mapcar (lambda (type-specifier)
                               (union-type-types (specifier-type type-specifier)))
                             *special-union-types*))
                    ;; Get the set of atoms that we need to pick out
                    (atoms (remove-duplicates (apply #'append constituent-types))))
               (labels ((atom->bit (atom) (ash 1 (position atom atoms)))
                        (compute-mask (parts) (apply #'+ (mapcar #'atom->bit parts))))
                 `(let ((bits 0))
                    (dolist (part remainder)
                      (setq bits
                            (logior bits
                                    (cond ,@(mapcar (lambda (atom)
                                                      `((eq part ,atom) ,(atom->bit atom)))
                                                    atoms)
                                          (t 0)))))
                    ;; Now we have a bitmask of all the interesting type atoms in the
                    ;; compound type. Try to match sets of bits, and remember it is
                    ;; possible to match more than one set,
                    ;; e.g. (OR STRING FLOAT BIGNUM) matches 3 pairs of bits.
                    ,@(mapcar (lambda (name parts &aux (mask (compute-mask parts)))
                                `(when (= (logand bits ,mask) ,mask) ; is all of these
                                   (setq bits (logand bits ,(lognot mask))) ; Subtract the bits
                                   ,@(mapcar (lambda (atom)
                                               `(setq remainder (delq1 ,atom remainder)))
                                             parts)
                                   (recognized ',name))) ; add to the output
                              *special-union-types* constituent-types))))))
        (generator))
      ;; See if we can pair any two constituent types that resolve to
      ;; ({STRING|SIMPLE-STRING|non-SIMPLE-STRING} n).
      ;; Repeat until there are no more pairs. This is a kludge.
      #+sb-unicode
      (loop for tail on remainder
            do (let* ((x (car tail))
                      (peer
                       (and (array-type-p x) ; If X is a CHARACTER vector
                            (eq (array-type-element-type x) (specifier-type 'character))
                            (singleton-p (array-type-dimensions x))
                            ;; And can be matched with a BASE-CHAR vector
                            (member-if (lambda (y)
                                         (and (array-type-p y)
                                              (eq (array-type-element-type y)
                                                  (specifier-type 'base-char))
                                              (eq (array-type-complexp y)
                                                  (array-type-complexp x))
                                              (equal (array-type-dimensions y)
                                                     (array-type-dimensions x))))
                                       (cdr tail)))))
                 (when peer ; then together they comprise a subtype of STRING
                   (let* ((dim (car (array-type-dimensions x)))
                          (string-type
                           (if (array-type-complexp x)
                               (if (eq dim '*) 'string `(string ,dim))
                               (if (eq dim '*) 'simple-string `(simple-string ,dim)))))
                     (recognized (if (eq (array-type-complexp x) 't)
                                     `(and ,string-type (not simple-array))
                                     string-type)))
                   (rplaca tail nil) ; We'll delete these list elements later
                   (rplaca peer nil))))
      (let (double
            single
            rational
            integer)
        (loop for x in remainder
              when (and (numeric-type-p x)
                        (eq (numeric-type-complexp x) :real))
              do (case (numeric-type-class x)
                   (rational
                    (setf rational x))
                   (integer
                    (setf integer x))
                   (float
                    (case (numeric-type-format x)
                      (double-float
                       (setf double x))
                      (single-float
                       (setf single x))))))
        (when (and double single)
          (let ((low (numeric-type-low single))
                (high (numeric-type-high single)))
            (labels ((n= (x y)
                       (and (not (float-infinity-or-nan-p x))
                            (sb-xc:= x y)))
                     (match (x y)
                       ;; equalp doesn't work on floats in sb-xc-host
                       (cond ((null x)
                              (null y))
                             ((consp x)
                              (and (consp y)
                                   (n= (car x)
                                       (car y))))
                             ((numberp y)
                              (n= x y)))))
              (when (and (match low (numeric-type-low double))
                         (match high (numeric-type-high double)))
                (setf remainder (delq1 double (delq1 single remainder)))
                (cond ((or (and rational
                                (match low (numeric-type-low rational))
                                (match high (numeric-type-high rational)))
                           (and (setf rational integer)
                                (numberp (numeric-type-low rational))
                                (eql (numeric-type-low rational)
                                     (numeric-type-high rational)) ;; (rational 1 1) is an integer.
                                (match low (numeric-type-low rational))
                                (match high (numeric-type-high rational))))
                       (setf remainder (delq1 rational remainder))
                       (let ((low (numeric-type-low rational))
                             (high (numeric-type-high rational)))
                         (recognized (cond (high
                                            `(real ,(or low '*) ,high))
                                           (low
                                            `(real ,low))))))
                      (t
                       (recognized (cond (high
                                          `(float ,(or low '*) ,high))
                                         (low
                                          `(float ,low)))))))))))
      (let ((list (nconc (recognized)
                         (type-unparse flags (delete nil remainder)))))
        (if (cdr list) `(or ,@list) (car list))))))

;;; Two union types are equal if they are each subtypes of each
;;; other. We need to be this clever because our complex subtypep
;;; methods are now more accurate; we don't get infinite recursion
;;; because the simple-subtypep method delegates to complex-subtypep
;;; of the individual types of type1. - CSR, 2002-04-09
;;;
;;; Previous comment, now obsolete, but worth keeping around because
;;; it is true, though too strong a condition:
;;;
;;; Two union types are equal if their subtypes are equal sets.
(define-type-method (union :simple-=) (type1 type2)
  (multiple-value-bind (subtype certain?)
      (csubtypep type1 type2)
    (if subtype
        (csubtypep type2 type1)
        ;; we might as well become as certain as possible.
        (if certain?
            (values nil t)
            (multiple-value-bind (subtype certain?)
                (csubtypep type2 type1)
              (values nil (and (not subtype) certain?)))))))

(define-type-method (union :complex-=) (type1 type2)
  (declare (ignore type1))
  (if (some #'type-might-contain-other-types-p
            (union-type-types type2))
      (values nil nil)
      (values nil t)))

;;; Similarly, a union type is a subtype of another if and only if
;;; every element of TYPE1 is a subtype of TYPE2.
(defun union-simple-subtypep (type1 type2)
  (every/type (swapped-args-fun #'union-complex-subtypep-arg2)
              type2
              (union-type-types type1)))

(define-type-method (union :simple-subtypep) (type1 type2)
  (union-simple-subtypep type1 type2))

(defun union-complex-subtypep-arg1 (type1 type2)
  (every/type (swapped-args-fun #'csubtypep)
              type2
              (union-type-types type1)))

(define-type-method (union :complex-subtypep-arg1) (type1 type2)
  (union-complex-subtypep-arg1 type1 type2))

(defun union-complex-subtypep-arg2 (type1 type2)
  ;; At this stage, we know that type2 is a union type and type1
  ;; isn't. We might as well check this, though:
  (aver (union-type-p type2))
  (aver (not (union-type-p type1)))
  ;; was: (any/type #'csubtypep type1 (union-type-types type2)), which
  ;; turns out to be too restrictive, causing bug 91.
  ;;
  ;; the following reimplementation might look dodgy. It is dodgy. It
  ;; depends on the union :complex-= method not doing very much work
  ;; -- certainly, not using subtypep. Reasoning:
  ;;
  ;;     A is a subset of (B1 u B2)
  ;; <=> A n (B1 u B2) = A
  ;; <=> (A n B1) u (A n B2) = A
  ;;
  ;; But, we have to be careful not to delegate this type= to
  ;; something that could invoke subtypep, which might get us back
  ;; here -> stack explosion. We therefore ensure that the second type
  ;; (which is the one that's dispatched on) is either a union type
  ;; (where we've ensured that the complex-= method will not call
  ;; subtypep) or something with no union types involved, in which
  ;; case we'll never come back here.
  ;;
  ;; If we don't do this, then e.g.
  ;; (SUBTYPEP '(MEMBER 3) '(OR (SATISFIES FOO) (SATISFIES BAR)))
  ;; would loop infinitely, as the member :complex-= method is
  ;; implemented in terms of subtypep.
  ;;
  ;; Ouch. - CSR, 2002-04-10
  (cond ((fun-designator-type-p type1)
         (type= type2 (specifier-type 'function-designator)))
        (t
         (multiple-value-bind (sub-value sub-certain?)
             (type= type1
                    (%type-union
                     (mapcar (lambda (x) (type-intersection type1 x))
                             (union-type-types type2))))
           (if sub-certain?
               (values sub-value sub-certain?)
               ;; The ANY/TYPE expression above is a sufficient condition for
               ;; subsetness, but not a necessary one, so we might get a more
               ;; certain answer by this CALL-NEXT-METHOD-ish step when the
               ;; ANY/TYPE expression is uncertain.
               (invoke-complex-subtypep-arg1-method type1 type2))))))

(define-type-method (union :complex-subtypep-arg2) (type1 type2)
  (union-complex-subtypep-arg2 type1 type2))

(define-type-method (union :simple-intersection2 :complex-intersection2)
                     (type1 type2)
  ;; The CSUBTYPEP clauses here let us simplify e.g.
  ;;   (TYPE-INTERSECTION2 (SPECIFIER-TYPE 'LIST)
  ;;                       (SPECIFIER-TYPE '(OR LIST VECTOR)))
  ;; (where LIST is (OR CONS NULL)).
  ;;
  ;; The tests are more or less (CSUBTYPEP TYPE1 TYPE2) and vice
  ;; versa, but it's important that we pre-expand them into
  ;; specialized operations on individual elements of
  ;; UNION-TYPE-TYPES, instead of using the ordinary call to
  ;; CSUBTYPEP, in order to avoid possibly invoking any methods which
  ;; might in turn invoke (TYPE-INTERSECTION2 TYPE1 TYPE2) and thus
  ;; cause infinite recursion.
  ;;
  ;; Within this method, type2 is guaranteed to be a union type:
  (aver (union-type-p type2))
  ;; Make sure to call only the applicable methods...
  (cond ((and (union-type-p type1)
              (union-simple-subtypep type1 type2)) type1)
        ((and (union-type-p type1)
              (union-simple-subtypep type2 type1)) type2)
        ((and (not (union-type-p type1))
              (union-complex-subtypep-arg2 type1 type2))
         type1)
        ((and (not (union-type-p type1))
              (union-complex-subtypep-arg1 type2 type1))
         type2)
        (t
         ;; KLUDGE: This code accumulates a sequence of TYPE-UNION2
         ;; operations in a particular order, and gives up if any of
         ;; the sub-unions turn out not to be simple. In other cases
         ;; ca. sbcl-0.6.11.15, that approach to taking a union was a
         ;; bad idea, since it can overlook simplifications which
         ;; might occur if the terms were accumulated in a different
         ;; order. It's possible that that will be a problem here too.
         ;; However, I can't think of a good example to demonstrate
         ;; it, and without an example to demonstrate it I can't write
         ;; test cases, and without test cases I don't want to
         ;; complicate the code to address what's still a hypothetical
         ;; problem. So I punted. -- WHN 2001-03-20
         (let ((accumulator *empty-type*))
           (dolist (t2 (union-type-types type2) accumulator)
             (setf accumulator
                   (type-union accumulator
                               (type-intersection type1 t2))))))))

(def-type-translator or :list ((:context context) &rest type-specifiers)
  ;; "* is not permitted as an argument to the OR type specifier."
  (let ((type (%type-union (mapcar (lambda (x) (specifier-type x context 'or))
                                   type-specifiers))))
    (if (union-type-p type)
        (sb-kernel::simplify-array-unions type)
        type)))


;;;; ALIEN-TYPE types

(define-type-class alien :enumerable nil :might-contain-other-types nil)

(define-type-method (alien :negate) (type) (make-negation-type type))

(define-type-method (alien :unparse) (flags type)
  `(alien ,(unparse-alien-type (alien-type-type-alien-type type))))

(define-type-method (alien :simple-subtypep) (type1 type2)
  (values (alien-subtype-p (alien-type-type-alien-type type1)
                           (alien-type-type-alien-type type2))
          t))

(define-type-method (alien :simple-=) (type1 type2)
  (let ((alien-type-1 (alien-type-type-alien-type type1))
        (alien-type-2 (alien-type-type-alien-type type2)))
    (values (or (eq alien-type-1 alien-type-2)
                (alien-type-= alien-type-1 alien-type-2))
            t)))

(def-type-translator alien (&optional (alien-type nil))
  (typecase alien-type
    (null
     (make-alien-type-type))
    (alien-type
     (make-alien-type-type alien-type))
    (t
     (make-alien-type-type (parse-alien-type alien-type (make-null-lexenv))))))

(defun make-alien-type-type (&optional alien-type)
  (if alien-type
      (let ((lisp-rep-type (compute-lisp-rep-type alien-type)))
        (if lisp-rep-type
            (single-value-specifier-type lisp-rep-type)
            (%make-alien-type-type alien-type)))
      *universal-type*))


;;;; CONS types

(def-type-translator cons ((:context context)
                            &optional (car-type-spec '*) (cdr-type-spec '*))
  (let ((car-type (single-value-specifier-type car-type-spec context))
        (cdr-type (single-value-specifier-type cdr-type-spec context)))
    (make-cons-type car-type cdr-type)))

(define-type-class cons :enumerable nil :might-contain-other-types nil)

(defun make-cons-type (car-type cdr-type)
  (aver (not (or (eq car-type *wild-type*)
                 (eq cdr-type *wild-type*))))
  (cond ((or (eq car-type *empty-type*)
             (eq cdr-type *empty-type*))
         *empty-type*)
        ;; Bypass the hashset for plain CONS
        ((and (eq car-type *universal-type*) (eq cdr-type *universal-type*))
         (inline-cache-ctype (!alloc-cons-type (make-ctype-bits 'cons)
                                               *universal-type* *universal-type*)
                             cons))
        (t
         (new-ctype cons-type
                    (logand (logior (type-%bits car-type) (type-%bits cdr-type))
                            +ctype-flag-mask+)
                    car-type cdr-type))))

;;; Return TYPE converted to canonical form for a situation where the
;;; "type" '* (which SBCL still represents as a type even though ANSI
;;; CL defines it as a related but different kind of placeholder) is
;;; equivalent to type T.
(defun type-*-to-t (type)
  (if (type= type *wild-type*)
      *universal-type*
      type))

(define-type-method (cons :negate) (type)
  (if (and (eq (cons-type-car-type type) *universal-type*)
           (eq (cons-type-cdr-type type) *universal-type*))
      (make-negation-type type)
      (type-union
       (make-negation-type (specifier-type 'cons))
       (cond
         ((and (not (eq (cons-type-car-type type) *universal-type*))
               (not (eq (cons-type-cdr-type type) *universal-type*)))
          (type-union
           (make-cons-type
            (type-negation (cons-type-car-type type))
            *universal-type*)
           (make-cons-type
            *universal-type*
            (type-negation (cons-type-cdr-type type)))))
         ((not (eq (cons-type-car-type type) *universal-type*))
          (make-cons-type
           (type-negation (cons-type-car-type type))
           *universal-type*))
         ((not (eq (cons-type-cdr-type type) *universal-type*))
          (make-cons-type
           *universal-type*
           (type-negation (cons-type-cdr-type type))))
         (t (bug "Weird CONS type ~S" type))))))

(define-type-method (cons :unparse) (flags type)
  (if (eq type (specifier-type 'cons))
      'cons
      `(cons ,(type-unparse flags (cons-type-car-type type))
             ,(type-unparse flags (cons-type-cdr-type type)))))

(define-type-method (cons :simple-=) (type1 type2)
  (declare (type cons-type type1 type2))
  (multiple-value-bind (car-match car-win)
      (type= (cons-type-car-type type1) (cons-type-car-type type2))
    (multiple-value-bind (cdr-match cdr-win)
        (type= (cons-type-cdr-type type1) (cons-type-cdr-type type2))
      (cond ((and car-match cdr-match)
             (aver (and car-win cdr-win))
             (values t t))
            (t
             (values nil
                     ;; FIXME: Ideally we would like to detect and handle
                     ;;  (CONS UNKNOWN INTEGER) (CONS UNKNOWN SYMBOL) => NIL, T
                     ;; but just returning a secondary true on (and car-win cdr-win)
                     ;; unfortunately breaks other things. --NS 2006-08-16
                     (and (or (and (not car-match) car-win)
                              (and (not cdr-match) cdr-win))
                          (not (and (cons-type-might-be-empty-type type1)
                                    (cons-type-might-be-empty-type type2))))))))))

(define-type-method (cons :simple-subtypep) (type1 type2)
  (declare (type cons-type type1 type2))
  (multiple-value-bind (val-car win-car)
      (csubtypep (cons-type-car-type type1) (cons-type-car-type type2))
    (multiple-value-bind (val-cdr win-cdr)
        (csubtypep (cons-type-cdr-type type1) (cons-type-cdr-type type2))
      (if (and val-car val-cdr)
          (values t (and win-car win-cdr))
          (values nil (or (and (not val-car) win-car)
                          (and (not val-cdr) win-cdr)))))))

;;; Give up if a precise type is not possible, to avoid returning
;;; overly general types.
(define-type-method (cons :simple-union2) (type1 type2)
  (declare (type cons-type type1 type2))
  (let ((car-type1 (cons-type-car-type type1))
        (car-type2 (cons-type-car-type type2))
        (cdr-type1 (cons-type-cdr-type type1))
        (cdr-type2 (cons-type-cdr-type type2))
        car-intersection)
    ;; UGH.  -- CSR, 2003-02-24
    (macrolet ((frob-car (car1 car2 cdr1 cdr2 &optional not1)
                 `(let ((intersection (type-intersection ,car2
                                                         ,(or not1 `(type-negation ,car1)))))
                    (unless (type= intersection ,car2)
                      (type-union
                       (make-cons-type ,car1 (type-union ,cdr1 ,cdr2))
                       (make-cons-type intersection ,cdr2))))))
      (cond ((type= car-type1 car-type2)
             (make-cons-type car-type1
                             (type-union cdr-type1 cdr-type2)))
            ((type= cdr-type1 cdr-type2)
             (make-cons-type (type-union car-type1 car-type2)
                             cdr-type1))
            ;; (or (cons A1 D1) (cons A2 D2))
            ;;
            ;; if A1 is a subtype of A2, this is equivalent to
            ;;
            ;; (or (cons A1 (or D1 D2)) (cons (and A2 (not A1)) D2))
            ((csubtypep car-type1 car-type2)
             (frob-car car-type1 car-type2 cdr-type1 cdr-type2))
            ((csubtypep car-type2 car-type1)
             (frob-car car-type2 car-type1 cdr-type2 cdr-type1))
            ;; in general
            ;;
            ;; (or (cons A1 D1) (cons A2 D2))
            ;;
            ;; is
            ;;
            ;; (or (cons (and A1 A2) (or D1 D2))
            ;;     (cons (and A1 (not A2)) D1)
            ;;     (cons (and (not A1) A2) D2))
            ;;
            ;; (or (cons (integer 0 8) (integer 5 15))
            ;;     (cons (integer 3 15) (integer 4 14))
            ;;
            ;; ->
            ;;
            ;; (or (cons (integer 3 8) (integer 4 15))
            ;;     (cons (integer 0 2) (integer 5 15))
            ;;     (cons (integer 9 15) (integer 4 14))
            ;;
            ;; if A1 and A2 are disjoint no further simplification is
            ;; possible.  However, if they are not disjoint, and we
            ;; can tell that they are not disjoint, we should be able
            ;; to break the type up into smaller pieces.
            ((not (eql (setf car-intersection (type-intersection car-type1 car-type2))
                       *empty-type*))
             (let ((cdr-union (type-union cdr-type1 cdr-type2))
                   (car-not1 (type-negation car-type1))
                   (car-not2 (type-negation car-type2)))
               (type-union
                (make-cons-type car-intersection cdr-union)
                (make-cons-type (type-intersection car-type1 car-not2) cdr-type1)
                (make-cons-type (type-intersection car-not1 car-type2) cdr-type2))))
            ;; Don't put these in -- consider the effect of taking the
            ;; union of (CONS (INTEGER 0 2) (INTEGER 5 7)) and
            ;; (CONS (INTEGER 0 3) (INTEGER 5 6)).
            #+nil
            ((csubtypep cdr-type1 cdr-type2)
             (frob-cdr car-type1 car-type2 cdr-type1 cdr-type2))
            #+nil
            ((csubtypep cdr-type2 cdr-type1)
             (frob-cdr car-type2 car-type1 cdr-type2 cdr-type1))))))

(define-type-method (cons :simple-intersection2) (type1 type2)
  (declare (type cons-type type1 type2))
  (let ((car-int2 (type-intersection2 (cons-type-car-type type1)
                                      (cons-type-car-type type2)))
        (cdr-int2 (type-intersection2 (cons-type-cdr-type type1)
                                      (cons-type-cdr-type type2))))
    (cond
      ((and car-int2 cdr-int2) (make-cons-type car-int2 cdr-int2))
      (car-int2 (make-cons-type car-int2
                                (type-intersection
                                 (cons-type-cdr-type type1)
                                 (cons-type-cdr-type type2))))
      (cdr-int2 (make-cons-type
                 (type-intersection (cons-type-car-type type1)
                                    (cons-type-car-type type2))
                 cdr-int2)))))

(!define-superclasses cons ((cons)) !cold-init-forms)

;;;; CHARACTER-SET types

;; FIXME:
;; 1. (SPECIFIER-TYPE '(CHARACTER-SET ((20 . 19)))) stores pairs exactly as
;;    given, and unparses to the rather bogus #<CHARACTER-SET-TYPE (MEMBER)>
;; 2. (SPECIFIER-TYPE '(CHARACTER-SET ((20 . 20) (15 . 15)))) fails
;;    because of the pre-sorting requirement.
;; But since this is not standard syntax I don't think we can ever see those
;; specifiers unless from an unparse of a valid internal representation.
(def-type-translator character-set
    (&optional (pairs `((0 . ,(1- char-code-limit)))))
  (make-character-set-type pairs))

(define-type-method (character-set :negate) (type)
  (let ((pairs (character-set-type-pairs type)))
    (if (and (= (length pairs) 1)
             (= (caar pairs) 0)
             (= (cdar pairs) (1- char-code-limit)))
        (make-negation-type type)
        (let ((not-character
               (make-negation-type
                (make-character-set-type
                 `((0 . ,(1- char-code-limit)))))))
          (type-union
           not-character
           (make-character-set-type
                   (let (not-pairs)
                     (when (> (caar pairs) 0)
                       (push (cons 0 (1- (caar pairs))) not-pairs))
                     (do* ((tail pairs (cdr tail))
                           (high1 (cdar tail) (cdar tail))
                           (low2 (caadr tail) (caadr tail)))
                          ((null (cdr tail))
                           (when (< (cdar tail) (1- char-code-limit))
                             (push (cons (1+ (cdar tail))
                                         (1- char-code-limit))
                                   not-pairs))
                           (nreverse not-pairs))
                       (push (cons (1+ high1) (1- low2)) not-pairs)))))))))

(define-type-method (character-set :unparse) (flags type)
  (cond
    ;; TODO: can we improve unparsing of (OR STANDARD-CHAR (MEMBER #\Tab))
    ;; to restore it back into itself rather than
    ;;  #<CHARACTER-SET-TYPE (CHARACTER-SET ((9 . 10) (32 . 126)))> ?
    ;; Probably need to take TYPE-DIFFERENCE of TYPE with each known
    ;; character-set type to see if any result is simpler.
    ((eq type (specifier-type 'character)) 'character)
    ((eq type (specifier-type 'base-char)) 'base-char)
    ((eq type (specifier-type 'extended-char)) 'extended-char)
    ((eq type (specifier-type 'standard-char)) 'standard-char)
    (t
     ;; Unparse into either MEMBER or CHARACTER-SET. We use MEMBER if there
     ;; are at most as many characters as there are character code ranges.
     ;; (basically saying to use MEMBER if each range is one character)
     (let* ((pairs (character-set-type-pairs type))
            (count (length pairs))
            (chars (loop named outer
                         for (low . high) in pairs
                         nconc (loop for code from low upto high
                                     collect (code-char code)
                                     when (minusp (decf count))
                                     do (return-from outer t)))))
       (if (eq chars t)
           `(character-set ,pairs)
           `(member ,@chars))))))

(define-type-method (character-set :singleton-p) (type)
  (let* ((pairs (character-set-type-pairs type))
         (pair  (first pairs)))
    (if (and (typep pairs '(cons t null))
             (eql (car pair) (cdr pair)))
        (values t (code-char (car pair)))
        (values nil nil))))

(define-type-method (character-set :simple-subtypep) (type1 type2)
  (values
   (dolist (pair (character-set-type-pairs type1) t)
     (unless (position pair (character-set-type-pairs type2)
                      :test (lambda (x y) (and (>= (car x) (car y))
                                               (<= (cdr x) (cdr y)))))
       (return nil)))
   t))

(define-type-method (character-set :simple-union2) (type1 type2)
  ;; KLUDGE: the canonizing in the MAKE-CHARACTER-SET-TYPE function
  ;; actually does the union for us.  It might be a little fragile to
  ;; rely on it.
  (make-character-set-type
          (merge 'list
                (copy-alist (character-set-type-pairs type1))
                (copy-alist (character-set-type-pairs type2))
                #'< :key #'car)))

(define-type-method (character-set :simple-intersection2) (type1 type2)
  ;; KLUDGE: brute force.
#|
  (let (pairs)
    (dolist (pair1 (character-set-type-pairs type1)
            (make-character-set-type
                    (sort pairs #'< :key #'car)))
      (dolist (pair2 (character-set-type-pairs type2))
       (cond
         ((<= (car pair1) (car pair2) (cdr pair1))
          (push (cons (car pair2) (min (cdr pair1) (cdr pair2))) pairs))
         ((<= (car pair2) (car pair1) (cdr pair2))
          (push (cons (car pair1) (min (cdr pair1) (cdr pair2))) pairs))))))
|#
  (make-character-set-type
          (intersect-type-pairs
           (character-set-type-pairs type1)
           (character-set-type-pairs type2))))

;;;
;;; Intersect two ordered lists of pairs
;;; Each list is of the form ((start1 . end1) ... (startn . endn)),
;;; where start1 <= end1 < start2 <= end2 < ... < startn <= endn.
;;; Each pair represents the integer interval start..end.
;;;
(defun intersect-type-pairs (alist1 alist2)
  (if (and alist1 alist2)
      (let ((res nil)
            (pair1 (pop alist1))
            (pair2 (pop alist2)))
        (loop
         (when (> (car pair1) (car pair2))
           (rotatef pair1 pair2)
           (rotatef alist1 alist2))
         (let ((pair1-cdr (cdr pair1)))
           (cond
            ((> (car pair2) pair1-cdr)
             ;; No over lap -- discard pair1
             (unless alist1 (return))
             (setq pair1 (pop alist1)))
            ((<= (cdr pair2) pair1-cdr)
             (push (cons (car pair2) (cdr pair2)) res)
             (cond
              ((= (cdr pair2) pair1-cdr)
               (unless alist1 (return))
               (unless alist2 (return))
               (setq pair1 (pop alist1)
                     pair2 (pop alist2)))
              (t ;; (< (cdr pair2) pair1-cdr)
               (unless alist2 (return))
               (setq pair1 (cons (1+ (cdr pair2)) pair1-cdr))
               (setq pair2 (pop alist2)))))
            (t ;; (> (cdr pair2) (cdr pair1))
             (push (cons (car pair2) pair1-cdr) res)
             (unless alist1 (return))
             (setq pair2 (cons (1+ pair1-cdr) (cdr pair2)))
             (setq pair1 (pop alist1))))))
        (nreverse res))
    nil))


;;; Return the type that describes all objects that are in X but not
;;; in Y.
(defun type-difference (x y)
  (type-intersection x (type-negation y)))

(def-type-translator array ((:context context)
                             &optional (element-type '*)
                                       (dimensions '*))
  (let ((eltype (if (eq element-type '*)
                    *wild-type*
                    (specifier-type element-type context))))
    (make-array-type (canonical-array-dimensions dimensions)
                     :complexp :maybe
                     :element-type eltype
                     :specialized-element-type (%upgraded-array-element-type
                                                eltype))))

(def-type-translator simple-array ((:context context)
                                    &optional (element-type '*)
                                              (dimensions '*))
  (let ((eltype (if (eq element-type '*)
                    *wild-type*
                    (specifier-type element-type context))))
   (make-array-type (canonical-array-dimensions dimensions)
                    :complexp nil
                    :element-type eltype
                    :specialized-element-type (%upgraded-array-element-type
                                               eltype))))

;;;; SIMD-PACK types

#+sb-simd-pack
(defmacro parsed-simd-pack-element-type (index)
  ;; For make-host-1, delay parsing until after 'deftypes-for-target' is loaded,
  ;; as it contains the needed definitions for SIGNED-BYTE and UNSIGNED-BYTE.
  ;; make-host-2 can splice in a constant vector.
  #+sb-xc-host `(specifier-type (aref +simd-pack-element-types+ ,index))
  #-sb-xc-host `(aref ,(coerce (loop for x across +simd-pack-element-types+
                                     collect (specifier-type x))
                               'simple-vector)
                      ,index))

#+sb-simd-pack
(progn
;;; FIXME: the pretty-print of this error message is just ghastly. How about:
;;;  "must be a subtype of ({SIGNED-BYTE|UNSIGNED-BYTE} {8|16|32|64}) or {SINGLE|DOUBLE}-FLOAT"
;;; Users sophisticated enough to code with simd-packs will understand what it means.
(defun simd-type-parser-helper (element-type-spec type-name ctor)
  (when (eq element-type-spec '*)
    (return-from simd-type-parser-helper (funcall ctor +simd-pack-wild+)))
  (let ((element-type (single-value-specifier-type element-type-spec)))
    (when (eq element-type *empty-type*)
      (return-from simd-type-parser-helper *empty-type*))
    (dotimes (i (length +simd-pack-element-types+)
                (error "~S element type must be a subtype of ~
                        ~{~/sb-impl:print-type-specifier/~#[~;, or ~
                        ~:;, ~]~}."
                     type-name (coerce +simd-pack-element-types+ 'list)))
      (when (csubtypep element-type (parsed-simd-pack-element-type i))
        (return (funcall ctor (ash 1 i)))))))

(defun simd-type-unparser-helper (base-type mask)
  (cond ((= mask +simd-pack-wild+) base-type)
        ((= (logcount mask) 1)
         `(,base-type ,(elt +simd-pack-element-types+ (sb-vm::simd-pack-mask->tag mask))))
        (t
         `(or ,@(loop for et across +simd-pack-element-types+ for i from 0
                      when (logbitp i mask)
                      collect `(,base-type ,et)))))))

#+sb-simd-pack
(progn
  (define-type-class simd-pack :enumerable nil :might-contain-other-types nil)

  ;; Though this involves a recursive call to parser, parsing context need not
  ;; be passed down, because an unknown-type condition is an immediate failure.
  (def-type-translator simd-pack (&optional (element-type-spec '*))
    (simd-type-parser-helper element-type-spec 'simd-pack #'%make-simd-pack-type))

  (define-type-method (simd-pack :negate) (type)
    (let ((not-pack (make-negation-type (specifier-type 'simd-pack)))
          (mask (logxor (simd-pack-type-tag-mask type) +simd-pack-wild+)))
      (if (eql mask 0)
          not-pack
          (type-union not-pack (%make-simd-pack-type mask)))))

  (define-type-method (simd-pack :unparse) (flags type)
    (simd-type-unparser-helper 'simd-pack (simd-pack-type-tag-mask type)))

  (define-type-method (simd-pack :simple-subtypep) (type1 type2)
    (declare (type simd-pack-type type1 type2))
    (values (zerop (logandc2 (simd-pack-type-tag-mask type1)
                             (simd-pack-type-tag-mask type2)))
            t))

  (define-type-method (simd-pack :simple-union2) (type1 type2)
    (declare (type simd-pack-type type1 type2))
    (%make-simd-pack-type (logior (simd-pack-type-tag-mask type1)
                                  (simd-pack-type-tag-mask type2))))

  (define-type-method (simd-pack :simple-intersection2) (type1 type2)
    (declare (type simd-pack-type type1 type2))
    (let ((intersection (logand (simd-pack-type-tag-mask type1)
                                (simd-pack-type-tag-mask type2))))
      (if (eql intersection 0) *empty-type* (%make-simd-pack-type intersection))))

  (!define-superclasses simd-pack ((simd-pack)) !cold-init-forms))

#+sb-simd-pack-256
(progn
  (define-type-class simd-pack-256 :enumerable nil :might-contain-other-types nil)

  ;; Though this involves a recursive call to parser, parsing context need not
  ;; be passed down, because an unknown-type condition is an immediate failure.
  (def-type-translator simd-pack-256 (&optional (element-type-spec '*))
    (simd-type-parser-helper element-type-spec 'simd-pack-256 #'%make-simd-pack-256-type))

  (define-type-method (simd-pack-256 :negate) (type)
    (let ((not-pack (make-negation-type (specifier-type 'simd-pack-256)))
          (mask (logxor (simd-pack-256-type-tag-mask type) +simd-pack-wild+)))
      (if (eql mask 0)
          not-pack
          (type-union not-pack (%make-simd-pack-256-type mask)))))

  (define-type-method (simd-pack-256 :unparse) (flags type)
    (simd-type-unparser-helper 'simd-pack-256 (simd-pack-256-type-tag-mask type)))

  (define-type-method (simd-pack-256 :simple-subtypep) (type1 type2)
    (declare (type simd-pack-256-type type1 type2))
    (values (zerop (logandc2 (simd-pack-256-type-tag-mask type1)
                             (simd-pack-256-type-tag-mask type2)))
            t))

  (define-type-method (simd-pack-256 :simple-union2) (type1 type2)
    (declare (type simd-pack-256-type type1 type2))
    (%make-simd-pack-256-type (logior (simd-pack-256-type-tag-mask type1)
                                      (simd-pack-256-type-tag-mask type2))))

  (define-type-method (simd-pack-256 :simple-intersection2) (type1 type2)
    (declare (type simd-pack-256-type type1 type2))
    (let ((intersection (logand (simd-pack-256-type-tag-mask type1)
                                (simd-pack-256-type-tag-mask type2))))
      (if (eql intersection 0) *empty-type* (%make-simd-pack-256-type intersection))))

  (!define-superclasses simd-pack-256 ((simd-pack-256)) !cold-init-forms))

;;;; utilities shared between cross-compiler and target system

;;; Does the type derived from compilation of an actual function
;;; definition satisfy declarations of a function's type?
(defun defined-ftype-matches-declared-ftype-p (defined-ftype declared-ftype)
  (declare (type ctype defined-ftype declared-ftype))
  (flet ((is-built-in-class-function-p (ctype)
           (and (built-in-classoid-p ctype)
                (eq (built-in-classoid-name ctype) 'function))))
    (cond (;; DECLARED-FTYPE could certainly be #<BUILT-IN-CLASS FUNCTION>;
           ;; that's what happens when we (DECLAIM (FTYPE FUNCTION FOO)).
           (is-built-in-class-function-p declared-ftype)
           ;; In that case, any definition satisfies the declaration.
           t)
          (;; It's not clear whether or how DEFINED-FTYPE might be
           ;; #<BUILT-IN-CLASS FUNCTION>, but it's not obviously
           ;; invalid, so let's handle that case too, just in case.
           (is-built-in-class-function-p defined-ftype)
           ;; No matter what DECLARED-FTYPE might be, we can't prove
           ;; that an object of type FUNCTION doesn't satisfy it, so
           ;; we return success no matter what.
           t)
          (;; Otherwise both of them must be FUN-TYPE objects.
           t
           ;; FIXME: For now we only check compatibility of the return
           ;; type, not argument types, and we don't even check the
           ;; return type very precisely (as per bug 94a). It would be
           ;; good to do a better job. Perhaps to check the
           ;; compatibility of the arguments, we should (1) redo
           ;; VALUES-TYPES-EQUAL-OR-INTERSECT as
           ;; ARGS-TYPES-EQUAL-OR-INTERSECT, and then (2) apply it to
           ;; the ARGS-TYPE slices of the FUN-TYPEs. (ARGS-TYPE
           ;; is a base class both of VALUES-TYPE and of FUN-TYPE.)
           (values-types-equal-or-intersect
            (fun-type-returns defined-ftype)
            (fun-type-returns declared-ftype))))))

;;; This messy case of CTYPE for NUMBER is shared between the
;;; cross-compiler and the target system.
;;; XXX: Is there a bug here with signed zeros, or are we confident that the
;;; answer is always supposed to be a NUMERIC-TYPE and never (MEMBER -0.0) ?
;;; I'm not sure whether NaNs should be numeric types versus MEMBER (like
;;; singleton signed zero without the "other" sign), but it may not matter.
;;; At a bare minimum this prevents crashing in min/max.
(defun ctype-of-number (x)
  (let ((num (if (complexp x) (realpart x) x)))
    (multiple-value-bind (complexp low high)
        (cond ((complexp x)
               (let ((imag (imagpart x)))
                 (if (and (floatp num) (or (float-nan-p num) (float-nan-p imag)))
                     (values :complex nil nil)
                     (values :complex (sb-xc:min num imag) (sb-xc:max num imag)))))
              ((and (floatp num) (float-nan-p num))
               (values :real nil nil))
              (t
               (values :real num num)))
      (make-numeric-type :class (etypecase num
                                  (integer (if (complexp x)
                                               (if (integerp (imagpart x))
                                                   'integer
                                                   'rational)
                                               'integer))
                                  (rational 'rational)
                                  (float 'float))
                         :format (and (floatp num) (float-format-name num))
                         :complexp complexp
                         :low low
                         :high high))))

;;; The following function is a generic driver for approximating
;;; set-valued functions over types.  Putting this here because it'll
;;; probably be useful for a lot of type analyses.
;;;
;;; Let f be a function from values of type X to Y, e.g., ARRAY-RANK.
;;;
;;; We compute an over or under-approximation of the set
;;;
;;;  F(TYPE) = { f(x) : x in TYPE /\ x in X } \subseteq Y
;;;
;;; via set-valued approximations of f, OVER and UNDER.
;;;
;;; These functions must have the property that
;;;   Forall TYPE, OVER(TYPE) \superseteq F(TYPE) and
;;;   Forall TYPE, UNDER(TYPE) \subseteq F(TYPE)
;;;
;;; The driver is also parameterised over the finite set
;;; representation.
;;;
;;; Union, intersection and difference are binary functions to compute
;;; set union, intersection and difference.  Top and bottom are the
;;; concrete representations for the universe and empty sets; we never
;;; call the set functions on top or bottom, so it's safe to use
;;; special values there.
;;;
;;; Arguments:
;;;
;;;  TYPE: the ctype for which we wish to approximate F(TYPE)
;;;  OVERAPPROXIMATE: true if we wish to overapproximate, nil otherwise.
;;;     You usually want T.
;;;  UNION/INTERSECTION/DIFFERENCE: implementations of finite set operations.
;;;     Conform to cl::(union/intersection/set-difference).  Passing NIL will
;;;     disable some cleverness and result in quicker computation of coarser
;;;     approximations.  However, passing difference without union and intersection
;;;     will probably not end well.
;;;  TOP/BOTTOM: concrete representation of the universe and empty set.  Finite
;;;     set operations are never called on TOP/BOTTOM, so it's safe to use special
;;;     values there.
;;;  OVER/UNDER: the set-valued approximations of F.
;;;
;;; Implementation details.
;;;
;;; It's a straightforward walk down the type.
;;; Union types -> take the union of children, intersection ->
;;; intersect.  There is some complication for negation types: we must
;;; not only negate the result, but also flip from overapproximating
;;; to underapproximating in the children (or vice versa).
;;;
;;; We represent sets as a pair of (negate-p finite-set) in order to
;;; support negation types.

(declaim (maybe-inline generic-abstract-type-function))
(defun generic-abstract-type-function
    (type overapproximate
     union intersection difference
     top bottom
     over under)
  (labels ((union* (x y)
             ;; wrappers to avoid calling union/intersection on
             ;; top/bottom.
             (cond ((or (eql x top)
                        (eql y top))
                    top)
                   ((eql x bottom) y)
                   ((eql y bottom) x)
                   (t
                    (funcall union x y))))
           (intersection* (x y)
             (cond ((or (eql x bottom)
                        (eql y bottom))
                    bottom)
                   ((eql x top) y)
                   ((eql y top) x)
                   (t
                    (funcall intersection x y))))
           (unite (not-x-p x not-y-p y)
             ;; if we only have one negated set, it's x.
             (when not-y-p
               (rotatef not-x-p not-y-p)
               (rotatef x y))
             (cond ((and not-x-p not-y-p)
                    ;; -x \/ -y = -(x /\ y)
                    (normalize t (intersection* x y)))
                   (not-x-p
                    ;; -x \/ y = -(x \ y)
                    (cond ((eql x top)
                           (values nil y))
                          ((or (eql y top)
                               (eql x bottom))
                           (values nil top))
                          ((eql y bottom)
                           (values t x))
                          (t
                           (normalize t
                                      (funcall difference x y)))))
                   (t
                    (values nil (union* x y)))))
           (intersect (not-x-p x not-y-p y)
             (when not-y-p
               (rotatef not-x-p not-y-p)
               (rotatef x y))
             (cond ((and not-x-p not-y-p)
                    ;; -x /\ -y = -(x \/ y)
                    (normalize t (union* x y)))
                   (not-x-p
                    ;; -x /\ y = y \ x
                    (cond ((or (eql x top) (eql y bottom))
                           (values nil bottom))
                          ((eql x bottom)
                           (values nil y))
                          ((eql y top)
                           (values t x))
                          (t
                           (values nil (funcall difference y x)))))
                   (t
                    (values nil (intersection* x y)))))
           (normalize (not-x-p x)
             ;; catch some easy cases of redundant negation.
             (cond ((not not-x-p)
                    (values nil x))
                   ((eql x top)
                    bottom)
                   ((eql x bottom)
                    top)
                   (t
                    (values t x))))
           (default (overapproximate)
             ;; default value
             (if overapproximate top bottom))
           (walk-union (types overapproximate)
             ;; Only do this if union is provided.
             (unless union
               (return-from walk-union (default overapproximate)))
             ;; Reduce/union from bottom.
             (let ((not-acc-p nil)
                   (acc bottom))
               (dolist (type types (values not-acc-p acc))
                 (multiple-value-bind (not x)
                     (walk type overapproximate)
                   (setf (values not-acc-p acc)
                         (unite not-acc-p acc not x)))
                 ;; Early exit on top set.
                 (when (and (eql acc top)
                            (not not-acc-p))
                   (return (values nil top))))))
           (walk-intersection (types overapproximate)
             ;; Skip if we don't know how to intersect sets
             (unless intersection
               (return-from walk-intersection (default overapproximate)))
             ;; Reduce/intersection from top
             (let ((not-acc-p nil)
                   (acc top))
               (dolist (type types (values not-acc-p acc))
                 (multiple-value-bind (not x)
                     (walk type overapproximate)
                   (setf (values not-acc-p acc)
                         (intersect not-acc-p acc not x)))
                 (when (and (eql acc bottom)
                            (not not-acc-p))
                   (return (values nil bottom))))))
           (walk-negate (type overapproximate)
             ;; Don't introduce negated types if we don't know how to
             ;; subtract sets.
             (unless difference
               (return-from walk-negate (default overapproximate)))
             (multiple-value-bind (not x)
                 (walk type (not overapproximate))
               (normalize (not not) x)))
           (walk (type overapproximate)
             (typecase type
               (union-type
                (walk-union (union-type-types type) overapproximate))
               ((cons (member or union))
                (walk-union (rest type) overapproximate))
               (intersection-type
                (walk-intersection (intersection-type-types type) overapproximate))
               ((cons (member and intersection))
                (walk-intersection (rest type) overapproximate))
               (negation-type
                (walk-negate (negation-type-type type) overapproximate))
               ((cons (eql not))
                (walk-negate (second type) overapproximate))
               (t
                (values nil
                        (if overapproximate
                            (if over
                                (funcall over type)
                                (default t))
                            (if under
                                (funcall under type)
                                (default nil))))))))
    (multiple-value-call #'normalize (walk type overapproximate))))

;;; Standard list representation of sets. Use CL:* for the universe.
(defun list-abstract-type-function (type over &key under (overapproximate t))
  #-sb-xc-host (declare (inline generic-abstract-type-function))
  (generic-abstract-type-function
   type overapproximate
   #'union #'intersection #'set-difference
   '* nil
   over under))


;;; This decides if two type expressions are equal ignoring the order of terms
;;; in AND and OR. It doesn't decide equivalence, but it's good enough
;;; to do some sanity checking in type.before-xc and genesis.
(defun brute-force-type-specifier-equalp (a b)
  (labels ((compare (a b)
             (if (symbolp a)
                 (eq a b)
                 (or (equal a b)
                     (and (listp b)
                          (eq (car a) (car b))
                          (case (car a)
                            ((and or)
                             (order-insensitive-equal (cdr a) (cdr b)))
                            ((not)
                             (compare (cadr a) (cadr b))))))))
           (order-insensitive-equal (a b)
             (and (= (length a) (length b))
                  (every (lambda (elt) (member elt b :test #'compare)) a)
                  (every (lambda (elt) (member elt a :test #'compare)) b))))
    (compare a b)))

;;;; miscellaneous interfaces

;;; Clear memoization of all type system operations that can be
;;; altered by type definition/redefinition.
;;;
(defun clear-type-caches ()
  ;; FIXME: We would like to differentiate between different cache
  ;; kinds, but at the moment all our caches pretty much are type
  ;; caches.
  (drop-all-hash-caches)
  (values))

(!defun-from-collected-cold-init-forms !type-cold-init)

;;; Ensure that the type CALLABLE gets interned with its constituent types
;;; in exactly the expected order. If flipped, there will be a complaint from
;;; compiler/generic/interr because we expect OBJECT-NOT-CALLABLE to unparse
;;; in a certain way. This DEFVAR is performed solely for side-effect.
(defvar *preload-type*
  (list (intern-ctype-set (list (specifier-type 'function)
                                (specifier-type 'symbol)))
        ;; .. any others as required
        ))