summaryrefslogtreecommitdiff
path: root/src/compiler/srctran.lisp
blob: 43b6b79e59a05fa35c3042be477132f280eb3c1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
;;;; This file contains macro-like source transformations which
;;;; convert uses of certain functions into the canonical form desired
;;;; within the compiler. FIXME: and other IR1 transforms and stuff.

;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.

(in-package "SB-C")

;;; We turn IDENTITY into PROG1 so that it is obvious that it just
;;; returns the first value of its argument. Ditto for VALUES with one
;;; arg.
(define-source-transform identity (x) `(prog1 ,x))
(define-source-transform values (x) `(prog1 ,x))

;;; Bind the value and make a closure that returns it.
(define-source-transform constantly (value)
  (with-unique-names (rest n-value)
    `(let ((,n-value ,value))
       (lambda (&rest ,rest)
         (declare (ignore ,rest))
         ,n-value))))

(defoptimizer (complement derive-type) ((fun))
  (let ((type (lvar-fun-type fun)))
    (when (fun-type-p type)
      (specifier-type
       (append (butlast (type-specifier type))
               '(boolean))))))

;;; If the function has a known number of arguments, then return a
;;; lambda with the appropriate fixed number of args. If the
;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
;;; MV optimization figure things out.
(deftransform complement ((fun) * * :node node)
  "open code"
  (multiple-value-bind (min max)
      (fun-type-nargs (lvar-type fun))
    (cond
     ((and min (eql min max))
      (let ((dums (make-gensym-list min)))
        `#'(lambda ,dums (not (funcall fun ,@dums)))))
     ((let ((lvar (node-lvar node)))
        (when lvar
          (let ((dest (lvar-dest lvar)))
            (and (combination-p dest)
                 (eq (combination-fun dest) lvar)))))
      '#'(lambda (&rest args)
           (not (apply fun args))))
     (t
      (give-up-ir1-transform
       "The function doesn't have a fixed argument count.")))))

;;;; list hackery

;;; Translate CxR into CAR/CDR combos.
(defun source-transform-cxr (form env)
  (declare (ignore env))
  (if (not (singleton-p (cdr form)))
      (values nil t)
      (let* ((name (car form))
             (string (symbol-name
                      (etypecase name
                        (symbol name)
                        (leaf (leaf-source-name name))))))
        (do ((i (- (length string) 2) (1- i))
             (res (cadr form)
                  `(,(ecase (char string i)
                       (#\A 'car)
                       (#\D 'cdr))
                    ,res)))
            ((zerop i) res)))))

;;; Make source transforms to turn CxR forms into combinations of CAR
;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
;;; defined.
;;; Don't transform CAD*R, they are treated specially for &more args
;;; optimizations

(loop for i of-type index from 2 upto 4 do
      ;; Iterate over BUF = all names CxR where x = an I-element
      ;; string of #\A or #\D characters.
      (let ((buf (make-string (+ 2 i))))
        (setf (aref buf 0) #\C
              (aref buf (1+ i)) #\R)
        (dotimes (j (ash 2 i))
          (declare (type index j))
          (dotimes (k i)
            (declare (type index k))
            (setf (aref buf (1+ k))
                  (if (logbitp k j) #\A #\D)))
          (unless (member buf '("CADR" "CADDR" "CADDDR")
                          :test #'equal)
            (setf (info :function :source-transform (intern buf))
                  #'source-transform-cxr)))))

;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
;;; whatever is right for them is right for us. FIFTH..TENTH turn into
;;; Nth, which can be expanded into a CAR/CDR later on if policy
;;; favors it.
(define-source-transform rest (x) `(cdr ,x))
(define-source-transform first (x) `(car ,x))
(define-source-transform second (x) `(cadr ,x))
(define-source-transform third (x) `(caddr ,x))
(define-source-transform fourth (x) `(cadddr ,x))
(define-source-transform fifth (x) `(nth 4 ,x))
(define-source-transform sixth (x) `(nth 5 ,x))
(define-source-transform seventh (x) `(nth 6 ,x))
(define-source-transform eighth (x) `(nth 7 ,x))
(define-source-transform ninth (x) `(nth 8 ,x))
(define-source-transform tenth (x) `(nth 9 ,x))

;;; Pick off special cases of LIST and LIST*.
(define-source-transform list (&rest args)
  (if args (values nil t) (values nil nil)))
(define-source-transform list* (arg &rest others)
  (if others (values nil t) (values arg nil)))
;;; Use LIST* in lieu of CONS so that there are only 2 low-level allocators
;;; instead of 3. Strictly speaking, LIST is redundant as well.
(define-source-transform cons (x y) `(list* ,x ,y))
#+system-tlabs
(unless-vop-existsp (:translate acons)
  (define-source-transform acons (key datum alist &environment env)
    (if (sb-vm::env-system-tlab-p env)
        `(cons (cons ,key ,datum) ,alist)
        (values nil t))))
(defoptimizer (list derive-type) ((&rest args))
  (if args
      (specifier-type 'cons)
      (specifier-type 'null)))

(defoptimizer (list* derive-type) ((arg &rest args))
  (if args
      (specifier-type 'cons)
      (lvar-type arg)))

(unless-vop-existsp (:translate unaligned-dx-cons)
  (define-source-transform unaligned-dx-cons (arg)
    `(list ,arg)))

(define-source-transform make-list (length &rest rest &environment env)
  (if (or (null rest)
          ;; Use of &KEY in source xforms doesn't have all the usual semantics.
          ;; It's better to hand-roll it - cf. transforms for WRITE[-TO-STRING].
          (typep rest '(cons (eql :initial-element) (cons t null))))
      `(,(if (sb-vm::env-system-tlab-p env)
             'sb-impl::%sys-make-list
             '%make-list)
        ,length ,(second rest))
      (values nil t))) ; give up

(deftransform %make-list ((length item) ((constant-arg (integer 0 2)) t))
  `(list ,@(make-list (lvar-value length) :initial-element 'item)))

(define-source-transform copy-list (list &environment env)
  ;; If speed is more important than space, or cons profiling is wanted,
  ;; then inline the whole copy loop.
  (if (policy env (or (> speed space) (> instrument-consing 1)))
      (once-only ((list `(the list ,list))) `(copy-list-macro ,list))
      (values nil t))) ; give up

;;; Optimize
;;; (loop append (cond (x
;;;                     nil)
;;;                    (t
;;;                     list)))
;;; by skipping copy-list-to from the NIL path.
(defoptimizer (sb-impl::copy-list-to optimizer) ((list tail) copy-list)
  (flet ((ref (ref lvar)
           (when (and (constant-p (ref-leaf ref))
                      (null (constant-value (ref-leaf ref)))
                      (almost-immediately-used-p lvar ref))
             (let ((set (node-dest copy-list)))
               (when (and (set-p set)
                          (eq (set-var set) (lvar-lambda-var tail))
                          (immediately-used-p (node-lvar copy-list) copy-list))
                 (node-ends-block set)
                 (node-ends-block ref)
                 (unlink-blocks (node-block ref) (car (block-succ (node-block ref))))
                 (delete-lvar-use ref)
                 (link-blocks (node-block ref) (car (block-succ (node-block set)))))))))
    (do-uses (node list)
      (typecase node
        (ref (ref node list))
        (cast
         (and (eq (cast-asserted-type node) (specifier-type 'list))
              (immediately-used-p list node)
              (do-uses (node (cast-value node))
                (when (ref-p node)
                  (ref node (node-lvar node))))))))))

(define-source-transform append (&rest lists)
  (case (length lists)
    (0 nil)
    (1 (car lists))
    (2 `(sb-impl::append2 ,@lists))
    (t (values nil t))))

(define-source-transform nconc (&rest lists)
  (case (length lists)
    (0 ())
    (1 (car lists))
    (t (values nil t))))

;;; (append nil nil nil fixnum) => fixnum
;;; (append x x cons x x) => cons
;;; (append x x x x list) => list
;;; (append x x x x sequence) => sequence
;;; (append fixnum x ...) => nil
(defun derive-append-type (args)
  (when (null args)
    (return-from derive-append-type (specifier-type 'null)))
  (let* ((cons-type (specifier-type 'cons))
         (null-type (specifier-type 'null))
         (last (lvar-type (car (last args)))))
    ;; Derive the actual return type, assuming that all but the last
    ;; arguments are LISTs (otherwise, APPEND/NCONC doesn't return).
    (loop with all-nil = t       ; all but the last args are NIL?
          with some-cons = nil   ; some args are conses?
          for (arg next) on args
          for lvar-type = (lvar-type arg)
          while next
          do
          (multiple-value-bind (typep definitely)
              (ctypep nil lvar-type)
            (cond (some-cons) ; we know result's a cons -- nothing to do
                  ((and (not typep) definitely) ; can't be NIL
                   (setf some-cons t))          ; must be a CONS
                  (all-nil
                   (setf all-nil (csubtypep lvar-type null-type)))))
          finally
             ;; if some of the previous arguments are CONSes so is the result;
             ;; if all the previous values are NIL, we're a fancy identity;
             ;; otherwise, could be either
             (return (cond (some-cons cons-type)
                           (all-nil last)
                           (t (type-union last cons-type)))))))

(defoptimizer (append derive-type) ((&rest args))
  (derive-append-type args))

(defoptimizer (sb-impl::append2 derive-type) ((&rest args))
  (derive-append-type args))

(defoptimizer (nconc derive-type) ((&rest args))
  (derive-append-type args))

(deftransform sb-impl::append2 ((x y) (null t) * :important nil)
  'y)

(deftransform sb-impl::append2 ((x y) (list t) * :important nil)
  (let* ((n (splice-fun-args x 'list nil))
         (args (make-gensym-list (length n))))
    `(lambda (,@args y) (list* ,@args y))))

(deftransform append ((x &rest args) (list &rest t) * :important nil)
  (let* ((n (splice-fun-args x 'list nil))
         (list-args (make-gensym-list (length n)))
         (append-args (make-gensym-list (length args))))
    `(lambda (,@list-args ,@append-args) (list* ,@list-args (append ,@append-args)))))

(defoptimizer (append externally-checkable-type) ((&rest lists) node lvar)
  (if (eq lvar (car (last lists)))
      (specifier-type t)
      (specifier-type 'list)))

(setf (fun-info-externally-checkable-type (fun-info-or-lose 'nconc))
      #'append-externally-checkable-type-optimizer)

(flet ((remove-nil (fun args)
         (let ((remove
                 (loop for (arg . rest) on args
                       when (and rest
                                 (eq (lvar-type arg) (specifier-type 'null)))
                       collect arg)))
           (if remove
               (let ((vars (make-gensym-list (length args))))
                 `(lambda ,vars
                    (declare (ignorable ,@vars))
                    (,fun ,@(loop for var in vars
                                  for arg in args
                                  unless (memq arg remove)
                                  collect var))))
               (give-up-ir1-transform)))))
  (deftransform append ((&rest args))
    (remove-nil 'append args))
  (deftransform nconc ((&rest args))
    (remove-nil 'nconc args)))

(flet ((transform (fun args subseq &rest prefix)
         (let* (new
                subseqp
                vars
                (args (loop for arg in args
                            if (and subseq
                                    (lvar-matches arg :fun-names '(vector-subseq* subseq))
                                    ;; Nothing should be modifying the original sequence
                                    (almost-immediately-used-p arg (lvar-use arg) :flushable t))
                            append (let ((call (lvar-uses arg)))
                                     (setf new t
                                           subseqp t)
                                     (destructuring-bind (sequence start &optional end) (combination-args call)
                                       (declare (ignorable sequence start))
                                       (splice-fun-args arg :any (if end 3 2))
                                       (list ''sb-impl::%subseq
                                             (car (push (gensym) vars))
                                             (car (push (gensym) vars))
                                             (when end
                                               (car (push (gensym) vars))))))
                            else if (or (eq (lvar-type arg) (specifier-type 'null))
                                        (csubtypep (lvar-type arg) (specifier-type '(simple-array * (0)))))
                            do (setf new t)
                               (push (gensym) vars)
                            else
                            collect (car (push (gensym) vars)))))

           (if new
               `(lambda ,(append prefix (reverse vars))
                  (declare (ignorable ,@vars))
                  (,(if subseqp
                        subseq
                        fun)
                   ,@prefix ,@args))
               (give-up-ir1-transform)))))
  (deftransform %concatenate-to-list ((&rest args))
    (transform '%concatenate-to-list args '%concatenate-to-list-subseq))

  (deftransform %concatenate-to-string ((&rest args))
    (transform '%concatenate-to-string args '%concatenate-to-string-subseq))

  (deftransform %concatenate-to-base-string ((&rest args))
    (transform '%concatenate-to-base-string args '%concatenate-to-base-string-subseq))

  (deftransform %concatenate-to-vector ((widetag &rest args))
    (transform '%concatenate-to-vector args '%concatenate-to-vector-subseq 'widetag))

  (deftransform %concatenate-to-simple-vector ((&rest args))
    (transform '%concatenate-to-simple-vector args '%concatenate-to-simple-vector-subseq))
  (deftransform concatenate ((type &rest args))
    (transform 'concatenate args nil 'type)))

(deftransform %concatenate-to-string ((string) ((array character (*))))
  `(subseq string 0))

#+sb-unicode
(deftransform %concatenate-to-string ((string) ((array base-char (*))))
  `(coerce string '(array character (*))))

(defun concatenate-subseq-type (lvar args)
  (flet ((check (arg type)
           (when (eq arg lvar)
             (return-from concatenate-subseq-type type))))
    (loop while args
          do (let ((arg (pop args)))
               (cond ((and (constant-lvar-p arg)
                           (eq (lvar-value arg) 'sb-impl::%subseq))
                      (check (pop args) (specifier-type 'sequence))
                      (check (pop args) (specifier-type 'index))
                      (check (pop args) (specifier-type '(or null index))))
                     (t
                      (check arg (specifier-type 'sequence))))))))

(defoptimizer (%concatenate-to-string-subseq externally-checkable-type) ((&rest args) node lvar)
  (concatenate-subseq-type lvar args))
(defoptimizer (%concatenate-to-base-string-subseq externally-checkable-type) ((&rest args) node lvar)
  (concatenate-subseq-type lvar args))
(defoptimizer (%concatenate-to-list-subseq externally-checkable-type) ((&rest args) node lvar)
  (concatenate-subseq-type lvar args))
(defoptimizer (%concatenate-to-simple-vector-subseq externally-checkable-type) ((&rest args) node lvar)
  (concatenate-subseq-type lvar args))
(defoptimizer (%concatenate-to-vector-subseq externally-checkable-type) ((type &rest args) node lvar)
  (concatenate-subseq-type lvar args))

(defoptimizer (%concatenate-to-list derive-type) ((&rest args))
  (loop for arg in args
        for min = (nth-value 1 (sequence-lvar-dimensions arg))
        when (typep min '(integer 1))
        return (specifier-type 'cons)))

;;; Translate RPLACx to LET and SETF.
(define-source-transform rplaca (x y)
  (once-only ((n-x x))
    `(progn
       (setf (car ,n-x) ,y)
       ,n-x)))
(define-source-transform rplacd (x y)
  (once-only ((n-x x))
    `(progn
       (setf (cdr ,n-x) ,y)
       ,n-x)))

(deftransform last ((list &optional n) (t &optional t))
  (let ((c (and n (constant-lvar-p n))))
    (cond ((or (not n)
               (and c (eql 1 (lvar-value n))))
           '(%last1 list))
          ((and c (eql 0 (lvar-value n)))
           '(%last0 list))
          (t
           (let ((type (lvar-type n)))
             (cond ((csubtypep type (specifier-type 'fixnum))
                    '(%lastn/fixnum list n))
                   ((csubtypep type (specifier-type 'bignum))
                    '(%lastn/bignum list n))
                   (t
                    (give-up-ir1-transform "second argument type too vague"))))))))

(define-source-transform gethash (&rest args)
  (case (length args)
   (2 `(sb-impl::gethash3 ,@args nil))
   (3 `(sb-impl::gethash3 ,@args))
   (t (values nil t))))
(define-source-transform get (&rest args)
  (case (length args)
   (2 `(sb-impl::get3 ,@args nil))
   (3 `(sb-impl::get3 ,@args))
   (t (values nil t))))

(defvar *default-nthcdr-open-code-limit* 6)
(defvar *extreme-nthcdr-open-code-limit* 20)

(deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
  "convert NTHCDR to CAxxR"
  (unless (constant-lvar-p n)
    (give-up-ir1-transform))
  (let ((n (lvar-value n)))
    (when (> n
             (if (policy node (and (= speed 3) (= space 0)))
                 *extreme-nthcdr-open-code-limit*
                 *default-nthcdr-open-code-limit*))
      (give-up-ir1-transform))

    (labels ((frob (n)
               (if (zerop n)
                   'l
                   `(cdr ,(frob (1- n))))))
      (frob n))))

(deftransform nth ((n l) (unsigned-byte t) * :node node)
  "convert NTH to CAxxR"
  (unless (constant-lvar-p n)
    (give-up-ir1-transform))
  (let ((n (lvar-value n)))
    (when (> n
             (if (policy node (and (= speed 3) (= space 0)))
                 *extreme-nthcdr-open-code-limit*
                 *default-nthcdr-open-code-limit*))
      (give-up-ir1-transform))
    (labels ((frob (n)
               (if (zerop n)
                   'l
                   `(cdr ,(frob (1- n))))))
      `(car ,(frob n)))))

;;;; arithmetic and numerology

(define-source-transform plusp (x) `(sb-xc:> ,x 0))
(define-source-transform minusp (x) `(sb-xc:< ,x 0))
(define-source-transform zerop (x) `(sb-xc:= ,x 0))

(define-source-transform 1+ (x) `(+ ,x 1))
(define-source-transform 1- (x) `(- ,x 1))

(define-source-transform oddp (x) `(logtest ,x 1))
(define-source-transform evenp (x) `(not (logtest ,x 1)))

(macrolet ((deffrob (fun)
             `(define-source-transform ,fun (x &optional (y nil y-p))
                (declare (ignore y))
                (if y-p
                    (values nil t)
                    `(,',fun ,x 1)))))
  (deffrob truncate)
  (deffrob round)
  (deffrob floor)
  (deffrob ceiling))

;;; This used to be a source transform (hence the lack of restrictions
;;; on the argument types), but we make it a regular transform so that
;;; the VM has a chance to see the bare LOGTEST and potentiall choose
;;; to implement it differently.  --njf, 06-02-2006
(deftransform logtest ((x y) * * :node node)
  (delay-ir1-transform node :ir1-phases)
  `(not (zerop (logand x y))))

(defoptimizer (logtest derive-type) ((x y))
  (let ((type (two-arg-derive-type x y
                                   #'logand-derive-type-aux
                                   #'logand)))
    (when type
      (multiple-value-bind (typep definitely)
          (ctypep 0 type)
        (cond ((and (not typep) definitely)
               (specifier-type '(eql t)))
              ((type= type (specifier-type '(eql 0)))
               (specifier-type '(eql nil))))))))

(defun logbitp-to-minusp-p (index integer)
  (let* ((int (type-approximate-interval (lvar-type integer)))
         (length (max (integer-length (interval-low int))
                      (integer-length (interval-high int))))
         (index-int (type-approximate-interval (lvar-type index))))
    (>= (interval-low index-int) length)))

(deftransform logbitp ((index integer) * * :node node)
  (let ((integer-type (lvar-type integer))
        (integer-value (and (constant-lvar-p integer)
                            (lvar-value integer))))
    (cond ((eql integer-value 0)
           nil)
          ((eql integer-value -1)
           t)
          ((csubtypep integer-type (specifier-type '(or word
                                                     sb-vm:signed-word)))
           (delay-ir1-transform node :ir1-phases)
           (if (logbitp-to-minusp-p index integer)
               `(minusp integer)
               `(logtest 1 (ash integer (- index)))))
          ((csubtypep integer-type (specifier-type 'bignum))
           (if (csubtypep (lvar-type index)
                          (specifier-type `(mod ,sb-vm:n-word-bits))) ; word-index
               `(logbitp index (%bignum-ref integer 0))
               `(bignum-logbitp index integer)))
          ((and (constant-lvar-p index)
                (< (lvar-value index) sb-vm:n-word-bits))
           `(logbitp index (logand integer ,most-positive-word)))
          (t
           (give-up-ir1-transform)))))


(defoptimizer (logbitp derive-type) ((index integer))
  (let* ((one (specifier-type '(eql 1)))
         (and (two-arg-derive-type index integer
                                   (lambda (index integer same)
                                     (declare (ignore same))
                                     (logand-derive-type-aux integer
                                                             (ash-derive-type-aux one index nil)))
                                   (lambda (index integer)
                                     (logand integer (ash 1 index))))))
    (cond ((not and)
           nil)
          ((type= and (specifier-type '(eql 0)))
           (specifier-type 'null))
          ((not (types-equal-or-intersect and (specifier-type '(eql 0))))
           (specifier-type '(eql t))))))

(define-source-transform byte (size position)
  (if (and (constantp size)
           (constantp position))
      `'(,(constant-form-value size) . ,(constant-form-value position))
      `(cons ,size ,position)))
(define-source-transform byte-size (spec) `(car ,spec))
(define-source-transform byte-position (spec) `(cdr ,spec))
(define-source-transform ldb-test (bytespec integer)
  `(not (zerop (mask-field ,bytespec ,integer))))

;;; With the ratio and complex accessors, we pick off the "identity"
;;; case, and use a primitive to handle the cell access case.
(define-source-transform numerator (num)
  (once-only ((n-num `(the rational ,num)))
    `(if (ratiop ,n-num)
         (%numerator ,n-num)
         ,n-num)))
(define-source-transform denominator (num)
  (once-only ((n-num `(the rational ,num)))
    `(if (ratiop ,n-num)
         (%denominator ,n-num)
         1)))

(defoptimizer (%numerator derive-type) ((num))
  (cond ((csubtypep (lvar-type num) (specifier-type '(rational 0)))
         (specifier-type '(integer 1)))
        ((csubtypep (lvar-type num) (specifier-type '(rational * 0)))
         (specifier-type '(integer * -1)))))

;;;; interval arithmetic for computing bounds
;;;;
;;;; This is a set of routines for operating on intervals. It
;;;; implements a simple interval arithmetic package. Although SBCL
;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
;;;; for two reasons:
;;;;
;;;;   1. This package is simpler than NUMERIC-TYPE.
;;;;
;;;;   2. It makes debugging much easier because you can just strip
;;;;   out these routines and test them independently of SBCL. (This is a
;;;;   big win!)
;;;;
;;;; One disadvantage is a probable increase in consing because we
;;;; have to create these new interval structures even though
;;;; numeric-type has everything we want to know. Reason 2 wins for
;;;; now.
(defun make-interval (&key low high)
  (labels ((normalize-bound (val)
             (cond ((and (floatp val)
                         (float-infinity-p val))
                    ;; Handle infinities.
                    nil)
                   ((or (numberp val)
                        (eq val nil))
                    ;; Handle any closed bounds.
                    val)
                   ((listp val)
                    ;; We have an open bound. Normalize the numeric
                    ;; bound. If the normalized bound is still a number
                    ;; (not nil), keep the bound open. Otherwise, the
                    ;; bound is really unbounded, so drop the openness.
                    (let ((new-val (normalize-bound (first val))))
                      (when new-val
                        ;; The bound exists, so keep it open still.
                        (list new-val))))
                   (t
                    (error "unknown bound type in MAKE-INTERVAL")))))
    (%make-interval (normalize-bound low)
                    (normalize-bound high))))

;; Some backends (and the host) have no float traps
(declaim (inline bad-float-p))
(defun bad-float-p (value)
  (declare (ignorable value))
  #+(or arm (and arm64 (not darwin)) riscv sb-xc-host)
  (or (and (floatp value)
           (float-infinity-or-nan-p value))
      (and (complex-float-p value)
           (or (float-infinity-or-nan-p (imagpart value))
               (float-infinity-or-nan-p (realpart value))))))

;;; Apply the function F to a bound X. If X is an open bound and the
;;; function is declared strictly monotonic, then the result will be
;;; open. IF X is NIL, the result is NIL.
(defun bound-func (f x strict)
  (declare (type function f))
  (when x
    (handler-case
        (let ((bound (funcall f (type-bound-number x))))
          (unless (bad-float-p bound)
            (set-bound bound (and strict (consp x)))))
      ;; Some numerical operations will signal an ERROR, e.g. in
      ;; the course of converting a bignum to a float. Default to
      ;; NIL in that case.
      (arithmetic-error ()))))

(defun safe-double-coercion-p (x)
  (or (typep x 'double-float)
      (sb-xc:<= most-negative-double-float x most-positive-double-float)))

(defun safe-single-coercion-p (x)
  (or (typep x 'single-float)
      (and
       ;; Fix for bug 420, and related issues: during type derivation we often
       ;; end up deriving types for both
       ;;
       ;;   (some-op <int> <single>)
       ;; and
       ;;   (some-op (coerce <int> 'single-float) <single>)
       ;;
       ;; or other equivalent transformed forms. The problem with this
       ;; is that on x86 (+ <int> <single>) is on the machine level
       ;; equivalent of
       ;;
       ;;   (coerce (+ (coerce <int> 'double-float)
       ;;              (coerce <single> 'double-float))
       ;;           'single-float)
       ;;
       ;; so if the result of (coerce <int> 'single-float) is not exact, the
       ;; derived types for the transformed forms will have an empty
       ;; intersection -- which in turn means that the compiler will conclude
       ;; that the call never returns, and all hell breaks lose when it *does*
       ;; return at runtime. (This affects not just +, but other operators are
       ;; well.)
       ;;
       ;; FIXME: If we ever add SSE-support for x86, this conditional needs to
       ;; change.
       ;; This is somewhat dubious. Why isn't anything done about
       ;; ratios? Why isn't safe-double-coercion-p doing the same,
       ;; given that x87 floats are 80-bits internally?
       #+x86
       (typep x `(or (not integer)
                     (integer ,most-negative-exactly-single-float-integer
                              ,most-positive-exactly-single-float-integer)))
       (sb-xc:<= most-negative-single-float x most-positive-single-float))))

;;; Apply a binary operator OP to two bounds X and Y. The result is
;;; NIL if either is NIL. Otherwise bound is computed and the result
;;; is open if either X or Y is open.
;;;
;;; FIXME: only used in this file, not needed in target runtime

;;; ANSI contagion specifies coercion to floating point if one of the
;;; arguments is floating point. Here we should check to be sure that
;;; the other argument is within the bounds of that floating point
;;; type.

(defmacro safely-binop (op x y)
  `(cond
     ((typep ,x 'double-float)
      (when (safe-double-coercion-p ,y)
        (,op ,x ,y)))
     ((typep ,y 'double-float)
      (when (safe-double-coercion-p ,x)
        (,op ,x ,y)))
     ((typep ,x 'single-float)
      (when (safe-single-coercion-p ,y)
        (,op ,x ,y)))
     ((typep ,y 'single-float)
      (when (safe-single-coercion-p ,x)
        (,op ,x ,y)))
     (t (,op ,x ,y))))

(defmacro bound-binop (op x y)
  (with-unique-names (xb yb res)
    `(and ,x ,y
          (handler-case
              (let* ((,xb (type-bound-number ,x))
                     (,yb (type-bound-number ,y))
                     (,res (safely-binop ,op ,xb ,yb)))
                (set-bound ,res
                           (and (or (consp ,x) (consp ,y))
                                ;; Open bounds can very easily be messed up
                                ;; by FP rounding, so take care here.
                                ,(ecase op
                                   (sb-xc:*
                                    ;; Multiplying a greater-than-zero with
                                    ;; less than one can round to zero.
                                    `(or (not (fp-zero-p ,res))
                                         (cond ((and (consp ,x) (fp-zero-p ,xb))
                                                (>= (abs ,yb) 1))
                                               ((and (consp ,y) (fp-zero-p ,yb))
                                                (>= (abs ,xb) 1)))))
                                   (sb-xc:/
                                    ;; Dividing a greater-than-zero with
                                    ;; greater than one can round to zero.
                                    `(or (not (fp-zero-p ,res))
                                         (cond ((and (consp ,x) (fp-zero-p ,xb))
                                                (<= (abs ,yb) 1))
                                               ((and (consp ,y) (fp-zero-p ,yb))
                                                (<= (abs ,xb) 1)))))
                                   ((sb-xc:+ sb-xc:-)
                                    ;; Adding or subtracting greater-than-zero
                                    ;; can end up with identity.
                                    `(and (not (fp-zero-p ,xb))
                                          (not (fp-zero-p ,yb))))))))
            (arithmetic-error ())))))

(defun coercion-loses-precision-p (val type)
  (typecase val
    (single-float)
    (double-float (subtypep type 'single-float))
    (rational (subtypep type 'float))
    (t (bug "Unexpected arguments to bounds coercion: ~S ~S" val type))))

(defun coerce-for-bound (val type)
  (cond
    ((or (null val)
         (null type))
     val)
    ((consp val)
     (let ((xbound (coerce-for-bound (car val) type)))
       (if (coercion-loses-precision-p (car val) type)
           xbound
           (list xbound))))
    ((subtypep type 'double-float)
     (if (sb-xc:<= most-negative-double-float val most-positive-double-float)
         (coerce val type)))
    ((or (subtypep type 'single-float) (subtypep type 'float))
     ;; coerce to float returns a single-float
     (if (sb-xc:<= most-negative-single-float val most-positive-single-float)
         (coerce val type)))
    (t (coerce val type))))

(defun coerce-and-truncate-floats (val type)
  (when val
    (if (consp val)
        (let ((xbound (coerce-for-bound (car val) type)))
          (if (coercion-loses-precision-p (car val) type)
              xbound
              (list xbound)))
        (cond
          ((subtypep type 'double-float)
           (if (sb-xc:<= most-negative-double-float val most-positive-double-float)
               (coerce val type)
               (if (sb-xc:< val most-negative-double-float)
                   most-negative-double-float most-positive-double-float)))
          ((or (subtypep type 'single-float) (subtypep type 'float))
           ;; coerce to float returns a single-float
           (if (sb-xc:<= most-negative-single-float val most-positive-single-float)
               (coerce val type)
               (if (sb-xc:< val most-negative-single-float)
                   most-negative-single-float most-positive-single-float)))
          (t (coerce val type))))))

;;; Convert a numeric-type object to an interval object.
(defun numeric-type->interval (x &optional integer)
  (declare (type numeric-type x))
  (let ((low (numeric-type-low x))
        (high (numeric-type-high x)))
    (make-interval :low (cond ((not integer)
                               low)
                              ((consp low)
                               (let ((low (car low)))
                                 (unless (and (floatp low)
                                              (float-infinity-or-nan-p low))
                                   (1+ (floor low)))))
                              (low
                               (unless (and (floatp low)
                                            (float-infinity-or-nan-p low))
                                 (ceiling low))))
                   :high (cond ((not integer)
                                high)
                               ((consp high)
                                (let ((high (car high)))
                                  (unless (and (floatp high)
                                               (float-infinity-or-nan-p high))
                                    (1- (ceiling high)))))
                               (high
                                (unless (and (floatp high)
                                             (float-infinity-or-nan-p high))
                                  (floor high)))))))

(defun type-approximate-interval (type &optional integer)
  (declare (type ctype type))
  (let ((types (prepare-arg-for-derive-type type))
        (result nil)
        complex)
    (dolist (type types)
      (let ((type (typecase type
                    (member-type type
                     (convert-member-type type))
                    (intersection-type
                     (find-if #'numeric-type-p
                              (intersection-type-types type)))
                    (t
                     type))))
        (unless (numeric-type-p type)
          (return-from type-approximate-interval (values nil nil)))
        (let ((interval (numeric-type->interval type integer)))
          (when (eq (numeric-type-complexp type) :complex)
            (setf complex t))
          (setq result
                (if result
                    (interval-approximate-union result interval)
                    interval)))))
    (values result complex)))

(defun copy-interval-limit (limit)
  (if (numberp limit)
      limit
      (copy-list limit)))

(defun copy-interval (x)
  (declare (type interval x))
  (make-interval :low (copy-interval-limit (interval-low x))
                 :high (copy-interval-limit (interval-high x))))

;;; Given a point P contained in the interval X, split X into two
;;; intervals at the point P. If CLOSE-LOWER is T, then the left
;;; interval contains P. If CLOSE-UPPER is T, the right interval
;;; contains P. You can specify both to be T or NIL.
(defun interval-split (p x &optional close-lower close-upper)
  (declare (type number p)
           (type interval x))
  (list (make-interval :low (copy-interval-limit (interval-low x))
                       :high (if close-lower p (list p)))
        (make-interval :low (if close-upper (list p) p)
                       :high (copy-interval-limit (interval-high x)))))

;;; Return the closure of the interval. That is, convert open bounds
;;; to closed bounds.
(defun interval-closure (x)
  (declare (type interval x))
  (make-interval :low (type-bound-number (interval-low x))
                 :high (type-bound-number (interval-high x))))

;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
;;; '-. Otherwise return NIL.
(defun interval-range-info (x &optional (point 0))
  (declare (type interval x))
  (let ((lo (interval-low x))
        (hi (interval-high x)))
    (cond ((and lo (sb-xc:>= (type-bound-number lo) point))
           '+)
          ((and hi (sb-xc:>= point (type-bound-number hi)))
           '-)
          (t
           nil))))

(defun interval-range-info> (x &optional (point 0))
  (declare (type interval x))
  (let ((lo (interval-low x))
        (hi (interval-high x)))
    (cond ((and lo (sb-xc:>= (type-bound-number lo) point))
           '+)
          ((and hi (sb-xc:> point (type-bound-number hi)))
           '-))))

;;; Test to see whether the interval X is bounded. HOW determines the
;;; test, and should be either ABOVE, BELOW, or BOTH.
(defun interval-bounded-p (x how)
  (declare (type interval x))
  (ecase how
    (above
     (interval-high x))
    (below
     (interval-low x))
    (both
     (and (interval-low x) (interval-high x)))))

;;; See whether the interval X contains the number P, taking into
;;; account that the interval might not be closed.
(defun interval-contains-p (p interval)
  (declare (type number p)
           (type interval interval))
  ;; Does the interval INTERVAL contain the number P?  This would be a lot
  ;; easier if all intervals were closed!
  (let ((lo (interval-low interval))
        (hi (interval-high interval)))
    (cond ((and lo hi)
           ;; The interval is bounded
           (if (and (sb-xc:<= (type-bound-number lo) p)
                    (sb-xc:<= p (type-bound-number hi)))
               ;; P is definitely in the closure of the interval.
               ;; We just need to check the end points now.
               (cond ((sb-xc:= p (type-bound-number lo))
                      (numberp lo))
                     ((sb-xc:= p (type-bound-number hi))
                      (numberp hi))
                     (t t))
               nil))
          (hi
           ;; Interval with upper bound
           (if (sb-xc:< p (type-bound-number hi))
               t
               (and (numberp hi) (sb-xc:= p hi))))
          (lo
           ;; Interval with lower bound
           (if (sb-xc:> p (type-bound-number lo))
               t
               (and (numberp lo) (sb-xc:= p lo))))
          (t
           ;; Interval with no bounds
           t))))

;;; Determine whether two intervals X and Y intersect. Return T if so.
;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
;;; were closed. Otherwise the intervals are treated as they are.
;;;
;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
;;; is T, then they do intersect because we use the closure of X = [0,
;;; 1] and Y = [1, 2] to determine intersection.
(defun interval-intersect-p (x y &optional closed-intervals-p)
  (declare (type interval x y))
  (and (interval-intersection/difference (if closed-intervals-p
                                             (interval-closure x)
                                             x)
                                         (if closed-intervals-p
                                             (interval-closure y)
                                             y))
       t))

;;; Are the two intervals adjacent?  That is, is there a number
;;; between the two intervals that is not an element of either
;;; interval?  If so, they are not adjacent. For example [0, 1) and
;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
;;; between both intervals.
(defun interval-adjacent-p (x y)
  (declare (type interval x y))
  (flet ((adjacent (lo hi)
           ;; Check to see whether lo and hi are adjacent. If either is
           ;; nil, they can't be adjacent.
           (when (and lo hi (sb-xc:= (type-bound-number lo) (type-bound-number hi)))
             ;; The bounds are equal. They are adjacent if one of
             ;; them is closed (a number). If both are open (consp),
             ;; then there is a number that lies between them.
             (or (numberp lo) (numberp hi)))))
    (or (adjacent (interval-low y) (interval-high x))
        (adjacent (interval-low x) (interval-high y)))))

;;; Compute the intersection and difference between two intervals.
;;; Two values are returned: the intersection and the difference.
;;;
;;; Let the two intervals be X and Y, and let I and D be the two
;;; values returned by this function. Then I = X intersect Y. If I
;;; is NIL (the empty set), then D is X union Y, represented as the
;;; list of X and Y. If I is not the empty set, then D is (X union Y)
;;; - I, which is a list of two intervals.
;;;
;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
;;; [-1,1) union [3,5], which is returned as a list of two intervals.
(defun interval-intersection/difference (x y)
  (declare (type interval x y))
  (let ((x-lo (interval-low x))
        (x-hi (interval-high x))
        (y-lo (interval-low y))
        (y-hi (interval-high y)))
    (labels
        ((opposite-bound (p)
           ;; If p is an open bound, make it closed. If p is a closed
           ;; bound, make it open.
           (if (listp p)
               (first p)
               (list p)))
         (test-number (p int bound)
           ;; Test whether P is in the interval.
           (let ((pn (type-bound-number p)))
             (when (interval-contains-p pn (interval-closure int))
               ;; Check for endpoints.
               (let* ((lo (interval-low int))
                      (hi (interval-high int))
                      (lon (type-bound-number lo))
                      (hin (type-bound-number hi)))
                 (cond
                   ;; Interval may be a point.
                   ((and lon hin (sb-xc:= lon hin pn))
                    (and (numberp p) (numberp lo) (numberp hi)))
                   ;; Point matches the low end.
                   ;; [P] [P,?} => TRUE     [P] (P,?} => FALSE
                   ;; (P  [P,?} => TRUE      P) [P,?} => FALSE
                   ;; (P  (P,?} => TRUE      P) (P,?} => FALSE
                   ((and lon (sb-xc:= pn lon))
                    (or (and (numberp p) (numberp lo))
                        (and (consp p) (eq :low bound))))
                   ;; [P] {?,P] => TRUE     [P] {?,P) => FALSE
                   ;;  P) {?,P] => TRUE     (P  {?,P] => FALSE
                   ;;  P) {?,P) => TRUE     (P  {?,P) => FALSE
                   ((and hin (sb-xc:= pn hin))
                    (or (and (numberp p) (numberp hi))
                        (and (consp p) (eq :high bound))))
                   ;; Not an endpoint, all is well.
                   (t
                    t))))))
         (test-lower-bound (p int)
           ;; P is a lower bound of an interval.
           (if p
               (test-number p int :low)
               (not (interval-bounded-p int 'below))))
         (test-upper-bound (p int)
           ;; P is an upper bound of an interval.
           (if p
               (test-number p int :high)
               (not (interval-bounded-p int 'above)))))
      (let ((x-lo-in-y (test-lower-bound x-lo y))
            (x-hi-in-y (test-upper-bound x-hi y))
            (y-lo-in-x (test-lower-bound y-lo x))
            (y-hi-in-x (test-upper-bound y-hi x)))
        (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
               ;; Intervals intersect. Let's compute the intersection
               ;; and the difference.
               (multiple-value-bind (lo left-lo left-hi)
                   (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
                         (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
                 (multiple-value-bind (hi right-lo right-hi)
                     (cond (x-hi-in-y
                            (values x-hi (opposite-bound x-hi) y-hi))
                           (y-hi-in-x
                            (values y-hi (opposite-bound y-hi) x-hi)))
                   (values (make-interval :low lo :high hi)
                           (list (make-interval :low left-lo
                                                :high left-hi)
                                 (make-interval :low right-lo
                                                :high right-hi))))))
              (t
               (values nil (list x y))))))))

;;; If intervals X and Y intersect, return a new interval that is the
;;; union of the two. If they do not intersect, return NIL.
(defun interval-merge-pair (x y)
  (declare (type interval x y))
  ;; If x and y intersect or are adjacent, create the union.
  ;; Otherwise return nil
  (when (or (interval-intersect-p x y)
            (interval-adjacent-p x y))
    (flet ((select-bound (x1 x2 min-op max-op)
             (let ((x1-val (type-bound-number x1))
                   (x2-val (type-bound-number x2)))
               (cond ((and x1 x2)
                      ;; Both bounds are finite. Select the right one.
                      (cond ((funcall min-op x1-val x2-val)
                             ;; x1 is definitely better.
                             x1)
                            ((funcall max-op x1-val x2-val)
                             ;; x2 is definitely better.
                             x2)
                            (t
                             ;; Bounds are equal. Select either
                             ;; value and make it open only if
                             ;; both were open.
                             (set-bound x1-val (and (consp x1) (consp x2))))))
                     (t
                      ;; At least one bound is not finite. The
                      ;; non-finite bound always wins.
                      nil)))))
      (let* ((x-lo (copy-interval-limit (interval-low x)))
             (x-hi (copy-interval-limit (interval-high x)))
             (y-lo (copy-interval-limit (interval-low y)))
             (y-hi (copy-interval-limit (interval-high y))))
        (make-interval :low (select-bound x-lo y-lo #'sb-xc:< #'sb-xc:>)
                       :high (select-bound x-hi y-hi #'sb-xc:> #'sb-xc:<))))))

;;; return the minimal interval, containing X and Y
(defun interval-approximate-union (x y)
  (cond ((interval-merge-pair x y))
        ((interval-< x y)
         (make-interval :low (copy-interval-limit (interval-low x))
                        :high (copy-interval-limit (interval-high y))))
        (t
         (make-interval :low (copy-interval-limit (interval-low y))
                        :high (copy-interval-limit (interval-high x))))))

;;; basic arithmetic operations on intervals. We probably should do
;;; true interval arithmetic here, but it's complicated because we
;;; have float and integer types and bounds can be open or closed.

;;; the negative of an interval
(defun interval-neg (x)
  (declare (type interval x))
  (make-interval :low (bound-func #'sb-xc:- (interval-high x) t)
                 :high (bound-func #'sb-xc:- (interval-low x) t)))

;;; Add two intervals.
(defun interval-add (x y)
  (declare (type interval x y))
  (make-interval :low (bound-binop sb-xc:+ (interval-low x) (interval-low y))
                 :high (bound-binop sb-xc:+ (interval-high x) (interval-high y))))

;;; Subtract two intervals.
(defun interval-sub (x y)
  (declare (type interval x y))
  (make-interval :low (bound-binop sb-xc:- (interval-low x) (interval-high y))
                 :high (bound-binop sb-xc:- (interval-high x) (interval-low y))))

;;; Multiply two intervals.
(defun interval-mul (x y)
  (declare (type interval x y))
  (flet ((bound-mul (x y)
           (cond ((or (null x) (null y))
                  ;; Multiply by infinity is infinity
                  nil)
                 ((or (and (numberp x) (zerop x))
                      (and (numberp y) (zerop y)))
                  ;; Multiply by closed zero is special. The result
                  ;; is always a closed bound. But don't replace this
                  ;; with zero; we want the multiplication to produce
                  ;; the correct signed zero, if needed. Use SIGNUM
                  ;; to avoid trying to multiply huge bignums with 0.0.
                  (sb-xc:* (signum (type-bound-number x))
                           (signum (type-bound-number y))))
                 ((or (and (floatp x) (float-infinity-p x))
                      (and (floatp y) (float-infinity-p y)))
                  ;; Infinity times anything is infinity
                  nil)
                 (t
                  ;; General multiply. The result is open if either is open.
                  (bound-binop sb-xc:* x y)))))
    (let ((x-range (interval-range-info x))
          (y-range (interval-range-info y)))
      (cond ((null x-range)
             ;; Split x into two and multiply each separately
             (destructuring-bind (x- x+) (interval-split 0 x t t)
               (interval-merge-pair (interval-mul x- y)
                                    (interval-mul x+ y))))
            ((null y-range)
             ;; Split y into two and multiply each separately
             (destructuring-bind (y- y+) (interval-split 0 y t t)
               (interval-merge-pair (interval-mul x y-)
                                    (interval-mul x y+))))
            ((eq x-range '-)
             (interval-neg (interval-mul (interval-neg x) y)))
            ((eq y-range '-)
             (interval-neg (interval-mul x (interval-neg y))))
            ((and (eq x-range '+) (eq y-range '+))
             ;; If we are here, X and Y are both positive.
             (make-interval
              :low (bound-mul (interval-low x) (interval-low y))
              :high (bound-mul (interval-high x) (interval-high y))))
            (t
             (bug "excluded case in INTERVAL-MUL"))))))

;;; Divide two intervals.
(defun interval-div (top bot &optional integer)
  (declare (type interval top bot))
  (labels ((interval-div (top bot)
             (flet ((bound-div (x y y-low-p)
                      ;; Compute x/y
                      (cond ((null y)
                             ;; Divide by infinity means result is 0. However,
                             ;; we need to watch out for the sign of the result,
                             ;; to correctly handle signed zeros. We also need
                             ;; to watch out for positive or negative infinity.
                             (cond ((floatp (type-bound-number x))
                                    (if y-low-p
                                        (sb-xc:- (float-sign (type-bound-number x) 0.0))
                                        (float-sign (type-bound-number x) 0.0)))
                                   ((and integer
                                         (not (interval-contains-p 0 top)))
                                    '(0))
                                   (t
                                    0)))
                            ((zerop (type-bound-number y))
                             (if integer
                                 x
                                 ;; Divide by zero means result is infinity
                                 nil))
                            ((and (numberp x) (zerop x))
                             ;; Zero divided by anything is zero, but don't lose the sign
                             (sb-xc:/ x (signum (type-bound-number y))))
                            (t
                             (bound-binop sb-xc:/ x y)))))
               (let ((top-range (interval-range-info top))
                     (bot-range (interval-range-info bot)))
                 (cond ((null bot-range)
                        (if integer
                            (destructuring-bind (bot- bot+) (interval-split 0 bot t t)
                              (let ((r- (interval-div top bot-))
                                    (r+ (interval-div top bot+)))
                                (or (interval-merge-pair r- r+)
                                    (list r- r+))))
                            ;; The denominator contains zero, so anything goes!
                            (make-interval)))
                       ((eq bot-range '-)
                        ;; Denominator is negative so flip the sign, compute the
                        ;; result, and flip it back.
                        (interval-neg (interval-div top (interval-neg bot))))
                       ((null top-range)
                        ;; Split top into two positive and negative parts, and
                        ;; divide each separately
                        (destructuring-bind (top- top+) (interval-split 0 top t t)
                          (or (interval-merge-pair (interval-div top- bot)
                                                   (interval-div top+ bot))
                              (make-interval))))
                       ((eq top-range '-)
                        ;; Top is negative so flip the sign, divide, and flip the
                        ;; sign of the result.
                        (interval-neg (interval-div (interval-neg top) bot)))
                       ((and (eq top-range '+) (eq bot-range '+))
                        ;; the easy case
                        (make-interval
                         :low (bound-div (interval-low top) (interval-high bot) t)
                         :high (bound-div (interval-high top) (interval-low bot) nil)))
                       (t
                        (bug "excluded case in INTERVAL-DIV")))))))
    (let ((interval (interval-div top bot)))
      (if (consp interval)
          interval
          (let ((low (interval-low interval))
                (high (interval-high interval)))
            (if (and (integerp low)
                     (not (eql low 0))
                     (eql low high))
                ;; Don't return constants, as it will produce an error when divided by 0.
                (if (plusp low)
                    (make-interval :low '(0) :high low)
                    (make-interval :low low :high '(0)))
                interval))))))

;;; Apply the function F to the interval X. If X = [a, b], then the
;;; result is [f(a), f(b)]. It is up to the user to make sure the
;;; result makes sense. It will if F is monotonic increasing (or, if
;;; the interval is closed, non-decreasing).
;;;
;;; (Actually most uses of INTERVAL-FUNC are coercions to float types,
;;; which are not monotonic increasing, so default to calling
;;; BOUND-FUNC with a non-strict argument).
(defun interval-func (f x &optional increasing)
  (declare (type function f)
           (type interval x))
  (let ((lo (bound-func f (interval-low x) increasing))
        (hi (bound-func f (interval-high x) increasing)))
    (make-interval :low lo :high hi)))

;;; Return T if X < Y. That is every number in the interval X is
;;; always less than any number in the interval Y.
(defun interval-< (x y)
  (declare (type interval x y))
  ;; X < Y only if X is bounded above, Y is bounded below, and they
  ;; don't overlap.
  (when (and (interval-bounded-p x 'above)
             (interval-bounded-p y 'below))
    ;; Intervals are bounded in the appropriate way. Make sure they
    ;; don't overlap.
    (let ((left (interval-high x))
          (right (interval-low y)))
      (cond ((sb-xc:> (type-bound-number left)
                      (type-bound-number right))
             ;; The intervals definitely overlap, so result is NIL.
             nil)
            ((sb-xc:< (type-bound-number left)
                      (type-bound-number right))
             ;; The intervals definitely don't touch, so result is T.
             t)
            (t
             ;; Limits are equal. Check for open or closed bounds.
             ;; Don't overlap if one or the other are open.
             (or (consp left) (consp right)))))))

;;; Return T if X >= Y. That is, every number in the interval X is
;;; always greater than any number in the interval Y.
(defun interval->= (x y)
  (declare (type interval x y))
  ;; X >= Y if lower bound of X >= upper bound of Y
  (when (and (interval-bounded-p x 'below)
             (interval-bounded-p y 'above))
    (sb-xc:>= (type-bound-number (interval-low x))
              (type-bound-number (interval-high y)))))

;;; Return T if X = Y.
(defun interval-= (x y)
  (declare (type interval x y))
  (and (interval-bounded-p x 'both)
       (interval-bounded-p y 'both)
       (flet ((bound (v)
                (if (numberp v)
                    v
                    ;; Open intervals cannot be =
                    (return-from interval-= nil))))
         ;; Both intervals refer to the same point
         (sb-xc:= (bound (interval-high x)) (bound (interval-low x))
                  (bound (interval-high y)) (bound (interval-low y))))))

;;; Return T if X /= Y
(defun interval-/= (x y)
  (not (interval-intersect-p x y)))

;;; Return an interval that is the absolute value of X. Thus, if
;;; X = [-1 10], the result is [0, 10].
(defun interval-abs (x)
  (declare (type interval x))
  (case (interval-range-info x)
    (+
     (copy-interval x))
    (-
     (interval-neg x))
    (t
     (destructuring-bind (x- x+) (interval-split 0 x t t)
       (interval-merge-pair (interval-neg x-) x+)))))

;;; Compute the square of an interval.
(defun interval-sqr (x)
  (declare (type interval x))
  (interval-func (lambda (x) (sb-xc:* x x)) (interval-abs x)))

(defun interval<n (interval n)
  (let ((high (interval-high interval)))
    (and high
         (if (consp high)
             (<= (car high) n)
             (< high n)))))

(defun interval-high<=n (interval n)
  (and interval
       (let ((high (interval-high interval)))
         (and high
              (sb-xc:<= (if (consp high)
                            (car high)
                            high)
                        n)))))

(defun interval-low>=n (interval n)
  (and interval
       (let ((low (interval-low interval)))
         (and low
              (sb-xc:>= (if (consp low)
                            (car low)
                            low)
                        n)))))

;;; Does it contain integers?
(defun interval-ratio-p (interval)
  (let ((low (interval-low interval))
        (high (interval-high interval)))
    (and (or (ratiop low)
             (if (consp low)
                 (setf low (car low))))
         (or (ratiop high)
             (and (consp high)
                  (setf high
                        (if (integerp (car high))
                            (1- (car high))
                            (car high)))))
         (= (floor low) (floor high)))))

(defun interval-float-p (interval)
  (let ((low (interval-low interval))
        (high (interval-high interval)))
    (flet ((fraction-p (x)
             (and (numberp x)
                  (not (integerp x))
                  (not (zerop (nth-value 1 (truncate x)))))))
     (and (or (fraction-p low)
              (if (consp low)
                  (setf low (car low))))
          (or (fraction-p high)
              (and (consp high)
                   (setf high
                         (if (fraction-p (car high))
                             (car high)
                             (1- (car high))))))
          (= (floor low) (floor high))))))

(defun interval-constant-p (interval)
  (let ((low (interval-low interval))
        (high (interval-high interval)))
    (and (numberp low)
         (eql low high)
         low)))

;;;; numeric DERIVE-TYPE methods

;;; a utility for defining derive-type methods of integer operations. If
;;; the types of both X and Y are integer types, then we compute a new
;;; integer type with bounds determined by FUN when applied to X and Y.
;;; Otherwise, we use NUMERIC-CONTAGION.
(defun derive-integer-type-aux (x y fun)
  (declare (type function fun))
  (if (and (numeric-type-p x) (numeric-type-p y)
           (eq (numeric-type-class x) 'integer)
           (eq (numeric-type-class y) 'integer)
           (eq (numeric-type-complexp x) :real)
           (eq (numeric-type-complexp y) :real))
      (multiple-value-bind (low high) (funcall fun x y)
        (make-numeric-type :class 'integer
                           :complexp :real
                           :low low
                           :high high))
      (numeric-contagion x y)))

(defun derive-integer-type (x y fun)
  (declare (type lvar x y) (type function fun))
  (let ((x (lvar-type x))
        (y (lvar-type y)))
    (derive-integer-type-aux x y fun)))

;;; simple utility to flatten a list
(defun flatten-list (x)
  (labels ((flatten-and-append (tree list)
             (cond ((null tree) list)
                   ((atom tree) (cons tree list))
                   (t (flatten-and-append
                       (car tree) (flatten-and-append (cdr tree) list))))))
    (flatten-and-append x nil)))

;;; Take some type of lvar and massage it so that we get a list of the
;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
;;; failure.
(defun prepare-arg-for-derive-type (arg)
  (flet ((listify (arg)
           (typecase arg
             (numeric-type
              (list arg))
             (union-type
              (union-type-types arg))
             (list
              arg)
             (t
              (list arg))))
         (ignore-hairy-type (type)
           (if (and (intersection-type-p type)
                    (find-if #'hairy-type-p (intersection-type-types type)))
               (find-if-not #'hairy-type-p (intersection-type-types type))
               type)))
    (unless (eq arg *empty-type*)
      ;; Make sure all args are some type of numeric-type. For member
      ;; types, convert the list of members into a union of equivalent
      ;; single-element member-type's.
      (let ((new-args nil))
        (dolist (arg (listify arg))
          (let ((arg (ignore-hairy-type arg)))
            (if (member-type-p arg)
                ;; Run down the list of members and convert to a list of
                ;; member types.
                (mapc-member-type-members
                 (lambda (member)
                   (push (if (numberp member) (make-eql-type member) *empty-type*)
                         new-args))
                 arg)
                (push arg new-args))))
        (unless (member *empty-type* new-args)
          new-args)))))

;;; Take a list of types and return a canonical type specifier,
;;; combining any MEMBER types together. If both positive and negative
;;; MEMBER types are present they are converted to a float type.
;;; XXX This would be far simpler if the type-union methods could handle
;;; member/number unions.
;;;
;;; If we're about to generate an overly complex union of numeric types, start
;;; collapse the ranges together.
;;;
;;; FIXME: The MEMBER canonicalization parts of MAKE-DERIVED-UNION-TYPE and
;;; entire CONVERT-MEMBER-TYPE probably belong in the kernel's type logic,
;;; invoked always, instead of in the compiler, invoked only during some type
;;; optimizations.
(defvar *derived-numeric-union-complexity-limit* 6)

(defun make-derived-union-type (type-list)
  (let ((xset (alloc-xset))
        (fp-zeroes '())
        (misc-types '())
        (numeric-type *empty-type*))
    (dolist (type type-list)
      (cond ((member-type-p type)
             (mapc-member-type-members
              (lambda (member)
                (if (fp-zero-p member)
                    (unless (member member fp-zeroes)
                      (pushnew member fp-zeroes))
                    (add-to-xset member xset)))
              type))
            ((numeric-type-p type)
             (setf numeric-type (type-union type numeric-type)))
            (t
             (push type misc-types))))
    (setf numeric-type (sb-kernel::weaken-numeric-type-union *derived-numeric-union-complexity-limit* numeric-type))
    (if (and (xset-empty-p xset) (not fp-zeroes))
        (apply #'type-union numeric-type misc-types)
        (apply #'type-union (make-member-type xset fp-zeroes)
               numeric-type misc-types))))

;;; Convert a member type with a single member to a numeric type.
(defun convert-member-type (arg)
  (let* ((members (member-type-members arg))
         (member (first members))
         (member-type (type-of member)))
    (aver (not (rest members)))
    (specifier-type (cond ((typep member 'integer)
                           `(integer ,member ,member))
                          ((memq member-type '(short-float single-float
                                               double-float long-float))
                           `(,member-type ,member ,member))
                          (t
                           member-type)))))

;;; This is used in defoptimizers for computing the resulting type of
;;; a function.
;;;
;;; Given the lvar ARG, derive the resulting type using the
;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
;;; "atomic" lvar type like numeric-type or member-type (containing
;;; just one element). It should return the resulting type, which can
;;; be a list of types.
;;;
;;; For the case of member types, if a MEMBER-FUN is given it is
;;; called to compute the result otherwise the member type is first
;;; converted to a numeric type and the DERIVE-FUN is called.
(defun one-arg-derive-type (arg derive-fun member-fun &optional (ratio-to-rational t))
  (declare (type function derive-fun)
           (type (or null function) member-fun))
  (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg))))
    (when arg-list
      (labels ((deriver (x)
                 (cond
                   ((member-type-p x)
                    (if member-fun
                        (handler-case
                            (specifier-type
                             `(eql ,(funcall member-fun
                                             (first (member-type-members x)))))
                          (arithmetic-error () nil))
                        ;; Otherwise convert to a numeric type.
                        (funcall derive-fun (convert-member-type x))))
                   ((or (numeric-type-p x)
                        (and (not ratio-to-rational)
                             (eq x (specifier-type 'ratio))))
                    (funcall derive-fun x))
                   ((eq x (specifier-type 'ratio))
                    (deriver (specifier-type 'rational))))))
        ;; Run down the list of args and derive the type of each one,
        ;; saving all of the results in a list.
        (let ((results nil))
          (dolist (arg arg-list)
            (let ((result (deriver arg)))
              (cond ((not result)
                     (return-from one-arg-derive-type))
                    ((listp result)
                     (setf results (append results result)))
                    (t
                     (push result results)))))
          (if (rest results)
              (make-derived-union-type results)
              (first results)))))))

;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
;;; original args and a third which is T to indicate if the two args
;;; really represent the same lvar. This is useful for deriving the
;;; type of things like (* x x), which should always be positive. If
;;; we didn't do this, we wouldn't be able to tell.
(defun two-arg-derive-type (arg1 arg2 derive-fun member-fun &optional (ratio-to-rational t))
  (%two-arg-derive-type (lvar-type arg1) (lvar-type arg2)
                        derive-fun member-fun
                        (same-leaf-ref-p arg1 arg2)
                        ratio-to-rational))

(defun %two-arg-derive-type (arg1-type arg2-type derive-fun member-fun &optional same-leaf (ratio-to-rational t))
  (declare (type function derive-fun member-fun))
  (labels ((numeric-or-ratio-p (x)
             (or (numeric-type-p x)
                 (eq x (specifier-type 'ratio))))
           (deriver (x y same-arg)
             (when ratio-to-rational
               (when (eq x (specifier-type 'ratio))
                 (setf x (specifier-type 'rational)))
               (when (eq y (specifier-type 'ratio))
                 (setf y (specifier-type 'rational))))
             (cond ((and (member-type-p x) (member-type-p y))
                    (let* ((x (first (member-type-members x)))
                           (y (first (member-type-members y)))
                           (result (ignore-errors
                                    (funcall member-fun x y))))
                      (cond ((null result) *empty-type*)
                            ((and (floatp result) (float-nan-p result))
                             (make-numeric-type :class 'float
                                                :format (type-of result)
                                                :complexp :real))
                            (t
                             (specifier-type `(eql ,result))))))
                   ((and (member-type-p x) (numeric-or-ratio-p y))
                    (funcall derive-fun (convert-member-type x) y same-arg))
                   ((and (numeric-or-ratio-p x) (member-type-p y))
                    (funcall derive-fun x (convert-member-type y) same-arg))
                   ((and (numeric-or-ratio-p x) (numeric-or-ratio-p y))
                    (funcall derive-fun x y same-arg))
                   (t
                    *universal-type*)))
           (derive (type1 type2 same-arg)
             (let ((a1 (prepare-arg-for-derive-type type1))
                   (a2 (prepare-arg-for-derive-type type2)))
               (when (and a1 a2)
                 (let ((results nil))
                   (if same-arg
                       ;; Since the args are the same LVARs, just run down the
                       ;; lists.
                       (dolist (x a1)
                         (let ((result (deriver x x same-arg)))
                           (if (listp result)
                               (setf results (append results result))
                               (push result results))))
                       ;; Try all pairwise combinations.
                       (dolist (x a1)
                         (dolist (y a2)
                           (let ((result (or (deriver x y same-arg)
                                             (numeric-contagion x y))))
                             (if (listp result)
                                 (setf results (append results result))
                                 (push result results))))))
                   (if (rest results)
                       (make-derived-union-type results)
                       (first results)))))))
    (derive arg1-type arg2-type same-leaf)))

(defun +-derive-type-aux (x y same-arg)
  (cond ((and (numeric-type-real-p x)
              (numeric-type-real-p y))
         (let* ((x-interval (numeric-type->interval x))
                (y-interval (if same-arg
                                x-interval
                                (numeric-type->interval y)))
                (result (interval-add x-interval y-interval))
                (result-type (numeric-contagion x y)))
           ;; If the result type is a float, we need to be sure to coerce
           ;; the bounds into the correct type.
           (when (eq (numeric-type-class result-type) 'float)
             (setf result (interval-func
                           #'(lambda (x)
                               (coerce-for-bound x (or (numeric-type-format result-type)
                                                       'float)))
                           result)))
           (let ((numeric (make-numeric-type
                           :class (if (and (eq (numeric-type-class x) 'integer)
                                           (eq (numeric-type-class y) 'integer))
                                      ;; The sum of integers is always an integer.
                                      'integer
                                      (numeric-type-class result-type))
                           :format (numeric-type-format result-type)
                           :low (interval-low result)
                           :high (interval-high result))))
             (if (or (and (eq (numeric-type-class x) 'integer)
                          (interval-ratio-p y-interval))
                     (and (eq (numeric-type-class y) 'integer)
                          (interval-ratio-p x-interval)))
                 (type-intersection numeric (specifier-type 'ratio))
                 numeric))))
        ((and (eq x (specifier-type 'ratio))
              (numeric-type-p y)
              (eq (numeric-type-class y) 'integer))
         (specifier-type 'ratio))
        ((and (eq y (specifier-type 'ratio))
              (numeric-type-p x)
              (eq (numeric-type-class x) 'integer))
         (specifier-type 'ratio))
        (t
         (numeric-contagion x y))))

(defoptimizer (+ derive-type) ((x y))
  (two-arg-derive-type x y #'+-derive-type-aux #'sb-xc:+ nil))

(defun --derive-type-aux (x y same-arg)
  (cond ((and (numeric-type-real-p x)
              (numeric-type-real-p y))
         (let* ((x-interval (numeric-type->interval x))
                (y-interval (if same-arg
                                x-interval
                                (numeric-type->interval y)))
                (result
                  ;; (- X X) is always 0.
                  (if same-arg
                      (make-interval :low 0 :high 0)
                      (interval-sub x-interval y-interval)))
                (result-type (numeric-contagion x y)))
           ;; If the result type is a float, we need to be sure to coerce
           ;; the bounds into the correct type.
           (when (eq (numeric-type-class result-type) 'float)
             (setf result (interval-func
                           #'(lambda (x)
                               (coerce-for-bound x (or (numeric-type-format result-type)
                                                       'float)))
                           result)))
           (let ((numeric
                   (make-numeric-type
                    :class (if (and (eq (numeric-type-class x) 'integer)
                                    (eq (numeric-type-class y) 'integer))
                               ;; The difference of integers is always an integer.
                               'integer
                               (numeric-type-class result-type))
                    :format (numeric-type-format result-type)
                    :low (interval-low result)
                    :high (interval-high result))))
             (if (or (and (eq (numeric-type-class x) 'integer)
                          (interval-ratio-p y-interval))
                     (and (eq (numeric-type-class y) 'integer)
                          (interval-ratio-p x-interval)))
                 (type-intersection numeric (specifier-type 'ratio))
                 numeric))))
        ((and (eq x (specifier-type 'ratio))
              (numeric-type-p y)
              (eq (numeric-type-class y) 'integer))
         (specifier-type 'ratio))
        ((and (eq y (specifier-type 'ratio))
              (numeric-type-p x)
              (eq (numeric-type-class x) 'integer))
         (specifier-type 'ratio))
        ((and same-arg
              (eq x (specifier-type 'ratio)))
         (specifier-type '(integer 0 0)))
        (t
         (numeric-contagion x y))))

(defoptimizer (- derive-type) ((x y))
  (two-arg-derive-type x y #'--derive-type-aux #'sb-xc:- nil))

(defun *-derive-type-aux (x y same-arg)
  (cond ((and (numeric-type-real-p x)
              (numeric-type-real-p y))
         (let* ((x-interval (numeric-type->interval x))
                (y-interval (if same-arg
                                x-interval
                                (numeric-type->interval y)))
                (result
                  ;; (* X X) is always positive, so take care to do it right.
                  (if same-arg
                      (interval-sqr x-interval)
                      (interval-mul x-interval y-interval)))
                (result-type (numeric-contagion x y)))
           ;; If the result type is a float, we need to be sure to coerce
           ;; the bounds into the correct type.
           (when (eq (numeric-type-class result-type) 'float)
             (setf result (interval-func
                           #'(lambda (x)
                               (coerce-for-bound x (or (numeric-type-format result-type)
                                                       'float)))
                           result)))
           (let ((numeric
                   (make-numeric-type
                    :class (if (and (eq (numeric-type-class x) 'integer)
                                    (eq (numeric-type-class y) 'integer))
                               ;; The product of integers is always an integer.
                               'integer
                               (numeric-type-class result-type))
                    :format (numeric-type-format result-type)
                    :low (interval-low result)
                    :high (interval-high result))))
             (flet ((ratio-result-p (a a-interval b-interval)
                      (let (ratio)
                        (and (eq (numeric-type-class a) 'integer)
                             (ratiop (setf ratio (interval-constant-p b-interval)))
                             (interval-bounded-p a-interval 'both)
                             ;; Is the integer between two adjecents
                             ;; powers of denominator?
                             (let* ((low (interval-low a-interval))
                                    (high (interval-high a-interval))
                                    (den (denominator ratio))
                                    (rem (nth-value 1 (ceiling low den))))
                               (and (not (zerop rem))
                                    (< high (- low rem))))))))
               (if (or (ratio-result-p x x-interval y-interval)
                       (ratio-result-p y y-interval x-interval))
                   (type-intersection numeric (specifier-type 'ratio))
                   numeric)))))
        ((and same-arg
              (eq x (specifier-type 'ratio)))
         ;; TODO: should be positive, but this result is an
         ;; intersection type which other optimizers do not see.
         (specifier-type 'ratio))
        (t
         (numeric-contagion x y))))

(defoptimizer (* derive-type) ((x y))
  (let ((x-type (lvar-type x))
        (y-type (lvar-type y)))
    (block nil
      (flet ((try-zero (x y)
               (when (and (csubtypep x (specifier-type 'integer))
                          (csubtypep (specifier-type '(eql 0)) x)
                          (csubtypep y (specifier-type '(and integer (not (eql 0))))))
                 (return
                   (let ((result (%two-arg-derive-type (type-intersection x (specifier-type '(and integer (not (eql 0)))))
                                                       y
                                                       #'*-derive-type-aux #'sb-xc:* nil)))
                     (when result
                       (type-union result (specifier-type '(eql 0)))))))))
        ;; If one of the integer arguments is non zero seperate the zero
        ;; result from the rest of the result range.
        (try-zero x-type y-type)
        (try-zero y-type x-type)
        (two-arg-derive-type x y #'*-derive-type-aux #'sb-xc:* nil)))))

(defoptimizer (%signed-multiply-high derive-type) ((x y))
  (two-arg-derive-type x y
                       (lambda (x y same-arg)
                         (let* ((type (*-derive-type-aux x y same-arg))
                                (low (numeric-type-low type))
                                (high (numeric-type-high type)))
                           (when (and low high)
                             (make-numeric-type :class 'integer
                                                :low
                                                (ash low (- sb-vm:n-word-bits))
                                                :high (ash high (- sb-vm:n-word-bits))))))
                       #'sb-xc:*))

(defoptimizer (%multiply-high derive-type) ((x y) node)
  (%signed-multiply-high-derive-type-optimizer node))

(defun /-derive-type-aux (x y same-arg)
  (cond ((and (numeric-type-real-p x)
              (numeric-type-real-p y))
         (let* ((x-interval (numeric-type->interval x))
                (y-interval (if same-arg
                                x-interval
                                (numeric-type->interval y)))
                (result-type (numeric-contagion x y))
                (y-integerp (eq (numeric-type-class y) 'integer))
                (result
                  ;; (/ X X) is always 1, except if X can contain 0. In
                  ;; that case, we shouldn't optimize the division away
                  ;; because we want 0/0 to signal an error.
                  (if (and same-arg
                           (not (interval-contains-p
                                 0 (interval-closure x-interval))))
                      (make-interval :low 1 :high 1)
                      (interval-div x-interval y-interval
                                    (and (memq (numeric-type-class x) '(integer rational))
                                         y-integerp)))))
           (cond ((consp result)
                  (type-union (make-numeric-type :class (numeric-type-class result-type)
                                                 :format (numeric-type-format result-type)
                                                 :low (interval-low (first result))
                                                 :high (interval-high (first result)))
                              (make-numeric-type :class (numeric-type-class result-type)
                                                 :format (numeric-type-format result-type)
                                                 :low (interval-low (second result))
                                                 :high (interval-high (second result)))))
                 (t
                  ;; If the result type is a float, we need to be sure to coerce
                  ;; the bounds into the correct type.
                  (when (eq (numeric-type-class result-type) 'float)
                    (setf result (interval-func
                                  #'(lambda (x)
                                      (coerce-for-bound x (or (numeric-type-format result-type)
                                                              'float)))
                                  result)))
                  (let ((numeric (make-numeric-type :class (numeric-type-class result-type)
                                                    :format (numeric-type-format result-type)
                                                    :low (interval-low result)
                                                    :high (interval-high result))))
                    (if (and y-integerp
                             (interval-ratio-p x-interval))
                        (type-intersection numeric (specifier-type 'ratio))
                        numeric))))))
        ((and (eq x (specifier-type 'ratio))
              (cond (same-arg
                     (specifier-type '(integer 1 1)))
                    ((and (numeric-type-p y)
                          (eq (numeric-type-class y) 'integer))
                     (specifier-type 'ratio)))))
        (t
         (numeric-contagion x y))))

(defoptimizer (/ derive-type) ((x y))
  (two-arg-derive-type x y #'/-derive-type-aux #'sb-xc:/ nil))

(defun ash-derive-type-aux (n-type shift same-arg)
  (declare (ignore same-arg))
  (flet ((ash-outer (n s)
           (when (and (fixnump s)
                      (<= s 64)
                      (> s most-negative-fixnum))
             (ash n s)))
         ;; KLUDGE: The bare 64's here should be related to
         ;; symbolic machine word size values somehow.

         (ash-inner (n s)
           (if (and (fixnump s)
                    (> s most-negative-fixnum))
             (ash n (min s 64))
             (if (minusp n) -1 0))))
    (or (and (csubtypep n-type (specifier-type 'integer))
             (csubtypep shift (specifier-type 'integer))
             (let ((n-low (numeric-type-low n-type))
                   (n-high (numeric-type-high n-type))
                   (s-low (numeric-type-low shift))
                   (s-high (numeric-type-high shift)))
               (make-numeric-type :class 'integer  :complexp :real
                                  :low (when n-low
                                         (if (minusp n-low)
                                           (ash-outer n-low s-high)
                                           (ash-inner n-low s-low)))
                                  :high (when n-high
                                          (if (minusp n-high)
                                            (ash-inner n-high s-low)
                                            (ash-outer n-high s-high))))))
        *universal-type*)))

(defoptimizer (ash derive-type) ((n shift))
  (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))

(defun lognot-derive-type-aux (int)
  (derive-integer-type-aux int int
                           (lambda (type type2)
                             (declare (ignore type2))
                             (let ((lo (numeric-type-low type))
                                   (hi (numeric-type-high type)))
                               (values (if hi (lognot hi) nil)
                                       (if lo (lognot lo) nil)
                                       (numeric-type-class type)
                                       (numeric-type-format type))))))

(defoptimizer (lognot derive-type) ((int))
  (one-arg-derive-type int #'lognot-derive-type-aux #'lognot))


(defun %negate-derive-type-aux (type)
  (if (eq type (specifier-type 'ratio))
      type
      (flet ((negate-bound (b)
               (and b
                    (set-bound (sb-xc:- (type-bound-number b))
                               (consp b)))))
        (modified-numeric-type
         type
         :low (negate-bound (numeric-type-high type))
         :high (negate-bound (numeric-type-low type))))))

(defoptimizer (%negate derive-type) ((num))
  (one-arg-derive-type num #'%negate-derive-type-aux #'sb-xc:- nil))

(defun abs-derive-type-aux (type)
  (cond ((eq type (specifier-type 'ratio))
         type)
        ((eq (numeric-type-complexp type) :complex)
         ;; The absolute value of a complex number is always a
         ;; non-negative float.
         (let* ((format (case (numeric-type-class type)
                          ((integer rational) 'single-float)
                          (t (numeric-type-format type))))
                (bound-format (or format 'float)))
           (make-numeric-type :class 'float
                              :format format
                              :complexp :real
                              :low (coerce 0 bound-format)
                              :high nil)))
        (t
         ;; The absolute value of a real number is a non-negative real
         ;; of the same type.
         (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
                (class (numeric-type-class type))
                (format (numeric-type-format type))
                (bound-type (or format class 'real)))
           (make-numeric-type
            :class class
            :format format
            :complexp :real
            :low (coerce-and-truncate-floats (interval-low abs-bnd) bound-type)
            :high (coerce-and-truncate-floats
                   (interval-high abs-bnd) bound-type))))))

(defoptimizer (abs derive-type) ((num))
  (one-arg-derive-type num #'abs-derive-type-aux #'abs nil))

(defun rem-result-type (number-type divisor-type)
  ;; Figure out what the remainder type is. The remainder is an
  ;; integer if both args are integers; a rational if both args are
  ;; rational; and a float otherwise.
  (cond ((and (csubtypep number-type (specifier-type 'integer))
              (csubtypep divisor-type (specifier-type 'integer)))
         'integer)
        ((and (csubtypep number-type (specifier-type 'rational))
              (csubtypep divisor-type (specifier-type 'rational)))
         'rational)
        ((and (csubtypep number-type (specifier-type 'float))
              (csubtypep divisor-type (specifier-type 'float)))
         ;; Both are floats so the result is also a float, of
         ;; the largest type.
         (or (float-format-max (numeric-type-format number-type)
                               (numeric-type-format divisor-type))
             'float))
        ((and (csubtypep number-type (specifier-type 'float))
              (csubtypep divisor-type (specifier-type 'rational)))
         ;; One of the arguments is a float and the other is a
         ;; rational. The remainder is a float of the same
         ;; type.
         (or (numeric-type-format number-type) 'float))
        ((and (csubtypep divisor-type (specifier-type 'float))
              (csubtypep number-type (specifier-type 'rational)))
         ;; One of the arguments is a float and the other is a
         ;; rational. The remainder is a float of the same
         ;; type.
         (or (numeric-type-format divisor-type) 'float))
        (t
         ;; Some unhandled combination. This usually means both args
         ;; are REAL so the result is a REAL.
         'real)))

(defvar *conservative-quotient-bound* t)

(defun truncate-derive-type-quot (number-type divisor-type)
  (let* ((rem-type (rem-result-type number-type divisor-type))
         (number-interval (numeric-type->interval number-type))
         (divisor-interval (numeric-type->interval divisor-type)))
    ;;(declare (type (member '(integer rational float)) rem-type))
    ;; We have real numbers now.
    (cond ((eq rem-type 'integer)
           ;; Since the remainder type is INTEGER, both args are
           ;; INTEGERs.
           (let* ((res (integer-truncate-derive-type
                        (interval-low number-interval)
                        (interval-high number-interval)
                        (interval-low divisor-interval)
                        (interval-high divisor-interval))))
             (specifier-type (if (listp res) res 'integer))))
          (t
           (multiple-value-bind (quot conservative)
               (if (and (eql (interval-high divisor-interval) 1)
                        (eql (interval-low divisor-interval) 1))
                   (values number-interval nil)
                   (values (interval-div number-interval
                                         divisor-interval)))
             (let* ((*conservative-quotient-bound* conservative)
                    (quot (truncate-quotient-bound quot)))
               (specifier-type `(integer ,(or (interval-low quot) '*)
                                         ,(or (interval-high quot) '*)))))))))

(defun truncate-derive-type-rem (number-type divisor-type)
  (let* ((rem-type (rem-result-type number-type divisor-type))
         (number-interval (numeric-type->interval number-type))
         (divisor-interval (numeric-type->interval divisor-type))
         (rem (truncate-rem-bound number-interval divisor-interval)))
    (cond ((and (numberp (interval-low divisor-interval))
                (numberp (interval-high divisor-interval))
                (zerop (interval-low divisor-interval))
                (zerop (interval-high divisor-interval)))
           nil)
          ((eq rem-type 'integer)
           ;; Since the remainder type is INTEGER, both args are
           ;; INTEGERs.
           (specifier-type `(,rem-type ,(or (interval-low rem) '*)
                                       ,(or (interval-high rem) '*))))
          (t
           (multiple-value-bind (class format)
               (ecase rem-type
                 (integer
                  (values 'integer nil))
                 (rational
                  (values 'rational nil))
                 ((single-float double-float #+long-float long-float)
                  (values 'float rem-type))
                 (float
                  (values 'float nil))
                 (real
                  (values nil nil)))
             (when (member rem-type '(float single-float double-float
                                            #+long-float long-float))
               (setf rem (interval-func #'(lambda (x)
                                            (coerce-for-bound x rem-type))
                                        rem)))
             (make-numeric-type :class class
                                :format format
                                :low (interval-low rem)
                                :high (interval-high rem)))))))

(defun truncate-derive-type-quot-aux (num div same-arg)
  (declare (ignore same-arg))
  (when (and (numeric-type-real-p num)
             (numeric-type-real-p div))
    (truncate-derive-type-quot num div)))

(defun truncate-derive-type-rem-aux (num div same-arg)
  (declare (ignore same-arg))
  (cond ((not (and (numeric-type-real-p num)
                   (numeric-type-real-p div)))
         nil)
        ;; Floats introduce rounding errors
        ((and (memq (numeric-type-class num) '(integer rational))
              (memq (numeric-type-class div) '(integer rational)))
         (truncate-derive-type-rem num div))
        (t
         (numeric-contagion num div))))

(defoptimizer (truncate derive-type) ((number divisor))
  (let ((quot (two-arg-derive-type number divisor
                                   #'truncate-derive-type-quot-aux #'truncate))
        (rem (two-arg-derive-type number divisor
                                  #'truncate-derive-type-rem-aux #'rem)))
    (when (and quot rem)
      (make-values-type (list quot rem)))))

(defun %unary-truncate-derive-type-aux (number)
  (truncate-derive-type-quot number (specifier-type '(integer 1 1))))

(defoptimizer (%unary-truncate derive-type) ((number))
  (one-arg-derive-type number
                       #'%unary-truncate-derive-type-aux
                       #'truncate))

(defoptimizer (%unary-truncate/single-float derive-type) ((number))
  (one-arg-derive-type number
                       #'%unary-truncate-derive-type-aux
                       #'truncate))

(defoptimizer (%unary-truncate/double-float derive-type) ((number))
  (one-arg-derive-type number
                       #'%unary-truncate-derive-type-aux
                       #'truncate))

(defoptimizer (unary-truncate derive-type) ((number))
  (let* ((one (specifier-type '(integer 1 1)))
         (quot (one-arg-derive-type number
                                    (lambda (x)
                                      (truncate-derive-type-quot-aux x one nil))
                                    #'truncate))
         (rem (one-arg-derive-type number
                                   (lambda (x) (truncate-derive-type-rem-aux x one nil))
                                   (lambda (x) (nth-value 1 (truncate x 1))))))
    (when (and quot rem)
      (make-values-type (list quot rem)))))

(deftransform unary-truncate ((number) (integer))
  '(values number 0))


(defun ftruncate-derive-type-quot (number-type divisor-type)
  ;; The bounds are the same as for truncate. However, the first
  ;; result is a float of some type. We need to determine what that
  ;; type is. Basically it's the more contagious of the two types.
  (let ((q-type (truncate-derive-type-quot number-type divisor-type))
        (format (numeric-type-format
                 (numeric-contagion number-type divisor-type))))
    (make-numeric-type :class 'float
                       :format format
                       :low (coerce-for-bound (numeric-type-low q-type) format)
                       :high (coerce-for-bound (numeric-type-high q-type) format))))

(defun ftruncate-derive-type-quot-aux (n d same-arg)
  (declare (ignore same-arg))
  (when (and (numeric-type-real-p n)
             (numeric-type-real-p d))
    (ftruncate-derive-type-quot n d)))


(defoptimizer (ftruncate derive-type) ((number divisor))
  (let ((quot
          (two-arg-derive-type number divisor
                               #'ftruncate-derive-type-quot-aux #'ftruncate))
        (rem (two-arg-derive-type number divisor
                                  #'truncate-derive-type-rem-aux #'rem)))
    (when (and quot rem)
      (make-values-type (list quot rem)))))

(macrolet ((derive (type)
             `(case (lvar-value mode)
                ,@(loop for mode in '(:round :floor :ceiling :truncate)
                        for fun in '(fround ffloor fceiling ftruncate)
                        collect
                        `(,mode
                          (one-arg-derive-type number
                                               (lambda (type)
                                                 (when (numeric-type-p type)
                                                   (let ((lo (numeric-type-low type))
                                                         (hi (numeric-type-high type)))
                                                     (specifier-type (list ',type
                                                                           (if lo
                                                                               (,fun (type-bound-number lo))
                                                                               '*)
                                                                           (if hi
                                                                               (,fun (type-bound-number hi))
                                                                               '*))))))
                                               (lambda (x)
                                                 (values (,fun x)))))))))
  (defoptimizer (round-single derive-type) ((number mode))
    (derive single-float))
  (defoptimizer (round-double derive-type) ((number mode))
    (derive double-float)))

(defoptimizer (%unary-round derive-type) ((number))
  (one-arg-derive-type number
                       (lambda (n)
                         (block nil
                           (unless (numeric-type-real-p n)
                             (return))
                           (let* ((interval (numeric-type->interval n))
                                  (low      (interval-low interval))
                                  (high     (interval-high interval)))
                             (when (consp low)
                               (setf low (car low)))
                             (when (consp high)
                               (setf high (car high)))
                             (specifier-type
                              `(integer ,(if low
                                             (round low)
                                             '*)
                                        ,(if high
                                             (round high)
                                             '*))))))
                       #'round))

;;; Define optimizers for FLOOR and CEILING.
(macrolet
    ((def (name q-name r-name)
       (let ((q-aux (symbolicate q-name "-AUX"))
             (r-aux (symbolicate r-name "-AUX")))
         `(progn
           ;; Compute type of quotient (first) result.
           (defun ,q-aux (number-type divisor-type)
             (let* ((number-interval
                     (numeric-type->interval number-type))
                    (divisor-interval
                     (numeric-type->interval divisor-type))
                    (quot (,q-name (interval-div number-interval
                                                 divisor-interval))))
               (specifier-type `(integer ,(or (interval-low quot) '*)
                                         ,(or (interval-high quot) '*)))))
           ;; Compute type of remainder.
           (defun ,r-aux (number-type divisor-type)
             (let* ((divisor-interval
                     (numeric-type->interval divisor-type))
                    (number-interval
                      (numeric-type->interval number-type))
                    (rem (,r-name number-interval divisor-interval))
                    (result-type (rem-result-type number-type divisor-type)))
               (multiple-value-bind (class format)
                   (ecase result-type
                     (integer
                      (values 'integer nil))
                     (rational
                      (values 'rational nil))
                     ((single-float double-float #+long-float long-float)
                      (values 'float result-type))
                     (float
                      (values 'float nil))
                     (real
                      (values nil nil)))
                 (when (member result-type '(float single-float double-float
                                             #+long-float long-float))
                   ;; Make sure that the limits on the interval have
                   ;; the right type.
                   (setf rem (interval-func (lambda (x)
                                              (coerce-for-bound x result-type))
                                            rem)))
                 (make-numeric-type :class class
                                    :format format
                                    :low (interval-low rem)
                                    :high (interval-high rem)))))
           ;; the optimizer itself
           (defoptimizer (,name derive-type) ((number divisor))
             (flet ((derive-q (n d same-arg)
                      (declare (ignore same-arg))
                      (when (and (numeric-type-real-p n)
                                 (numeric-type-real-p d))
                        (,q-aux n d)))
                    (derive-r (num div same-arg)
                      (declare (ignore same-arg))
                      (cond ((not (and (numeric-type-real-p num)
                                       (numeric-type-real-p div)))
                             nil)
                            ;; Floats introduce rounding errors
                            ((and (memq (numeric-type-class num) '(integer rational))
                                  (memq (numeric-type-class div) '(integer rational)))
                             (,r-aux num div))
                            (t
                             (numeric-contagion num div)))))
               (let ((quot (two-arg-derive-type
                            number divisor #'derive-q #',name))
                     (rem (two-arg-derive-type
                           number divisor #'derive-r #'mod)))
                 (when (and quot rem)
                   (make-values-type (list quot rem))))))))))

  (def floor floor-quotient-bound floor-rem-bound)
  (def ceiling ceiling-quotient-bound ceiling-rem-bound))

;;; The quotient for floats depends on the divisor,
;;; make the result conservative, without letting it cross 0
(defmacro conservative-quotient-bound (result direction bound)
  (let ((result-sym (gensym)))
    `(let ((,result-sym ,result))
       (,direction ,result-sym
                   (if (and *conservative-quotient-bound*
                            (floatp ,bound)
                            (/= ,result-sym 0))
                       1
                       0)))))

;;; functions to compute the bounds on the quotient and remainder for
;;; the FLOOR function
(defun floor-quotient-bound (quot)
  ;; Take the floor of the quotient and then massage it into what we
  ;; need.
  (let ((lo (interval-low quot))
        (hi (interval-high quot)))
    (make-interval
     ;; Take the floor of the lower bound. The result is always a
     ;; closed lower bound.
     :low
     (and lo
          (conservative-quotient-bound
           (floor (type-bound-number lo))
           -
           (type-bound-number lo)))
     :high
     (and hi
          (conservative-quotient-bound
           (if (consp hi)
               ;; An open bound. We need to be careful here because
               ;; the floor of '(10.0) is 9, but the floor of
               ;; 10.0 is 10.
               (multiple-value-bind (q r) (floor (first hi))
                 (if (zerop r)
                     (1- q)
                     q))
               ;; A closed bound, so the answer is obvious.
               (floor hi))
           +
           (type-bound-number hi))))))

(defun floor-rem-bound (num div)
  (case (interval-range-info div)
    (+
     ;; The divisor is always positive.
     (let ((rem (interval-abs div)))
       (setf (interval-low rem) 0)
       (when (and (numberp (interval-high rem))
                  (not (zerop (interval-high rem))))
         ;; The remainder never contains the upper bound. However,
         ;; watch out for the case where the high limit is zero!
         (setf (interval-high rem) (list (interval-high rem))))
       ;; The remainder can't be greater than the number
       ;; if it's getting truncated towards zero.
       (when (and (eq (interval-range-info num) '+)
                  (numberp (interval-high num))
                  (interval-contains-p (interval-high num) rem))
         (setf (interval-high rem) (interval-high num)))
       rem))
    (-
     ;; The divisor is always negative.
     (let ((rem (interval-neg (interval-abs div))))
       (setf (interval-high rem) 0)
       (when (numberp (interval-low rem))
         ;; The remainder never contains the lower bound.
         (setf (interval-low rem) (list (interval-low rem))))
       ;; The remainder can't be greater than the number
       ;; if it's getting truncated towards zero.
       (when (and (eq (interval-range-info num) '-)
                  (numberp (interval-low num))
                  (interval-contains-p (interval-low num) rem))
         (setf (interval-low rem) (interval-low num)))
       rem))
    (otherwise
     ;; The divisor can be positive or negative. All bets off. The
     ;; magnitude of remainder is the maximum value of the divisor.
     (let ((limit (type-bound-number (interval-high (interval-abs div)))))
       ;; The bound never reaches the limit, so make the interval open.
       (make-interval :low (if limit
                               (list (- limit))
                               limit)
                      :high (list limit))))))
#| Test cases
(floor-quotient-bound (make-interval :low 0.3 :high 10.3))
=> #S(INTERVAL :LOW 0 :HIGH 10)
(floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
=> #S(INTERVAL :LOW 0 :HIGH 10)
(floor-quotient-bound (make-interval :low 0.3 :high 10))
=> #S(INTERVAL :LOW 0 :HIGH 10)
(floor-quotient-bound (make-interval :low 0.3 :high '(10)))
=> #S(INTERVAL :LOW 0 :HIGH 9)
(floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
=> #S(INTERVAL :LOW 0 :HIGH 10)
(floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
=> #S(INTERVAL :LOW 0 :HIGH 10)
(floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
=> #S(INTERVAL :LOW -2 :HIGH 10)
(floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
=> #S(INTERVAL :LOW -1 :HIGH 10)
(floor-quotient-bound (make-interval :low -1.0 :high 10.3))
=> #S(INTERVAL :LOW -1 :HIGH 10)

(floor-rem-bound (make-interval :low 0.3 :high 10.3))
=> #S(INTERVAL :LOW 0 :HIGH '(10.3))
(floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
=> #S(INTERVAL :LOW 0 :HIGH '(10.3))
(floor-rem-bound (make-interval :low -10 :high -2.3))
#S(INTERVAL :LOW (-10) :HIGH 0)
(floor-rem-bound (make-interval :low 0.3 :high 10))
=> #S(INTERVAL :LOW 0 :HIGH '(10))
(floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
=> #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
(floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
=> #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
|#

;;; same functions for CEILING
(defun ceiling-quotient-bound (quot)
  ;; Take the ceiling of the quotient and then massage it into what we
  ;; need.
  (let ((lo (interval-low quot))
        (hi (interval-high quot)))
    (make-interval
     :low
     (and lo
          (conservative-quotient-bound
           (if (consp lo)
               ;; An open bound. We need to be careful here because
               ;; the ceiling of '(10.0) is 11, but the ceiling of
               ;; 10.0 is 10.
               (multiple-value-bind (q r) (ceiling (first lo))
                 (if (zerop r)
                     (1+ q)
                     q))
               ;; A closed bound, so the answer is obvious.
               (ceiling lo))
           -
           (type-bound-number lo)))
     :high
     ;; Take the ceiling of the upper bound. The result is always a
     ;; closed upper bound.
     (and hi
          (conservative-quotient-bound
           (ceiling (type-bound-number hi))
           +
           (type-bound-number hi))))))

(defun ceiling-rem-bound (num div)
  (case (interval-range-info div)
    (+
     ;; Divisor is always positive. The remainder is negative.
     (let ((rem (interval-neg (interval-abs div))))
       (setf (interval-high rem) 0)
       (when (and (numberp (interval-low rem))
                  (not (zerop (interval-low rem))))
         ;; The remainder never contains the upper bound. However,
         ;; watch out for the case when the upper bound is zero!
         (setf (interval-low rem) (list (interval-low rem))))
       ;; The remainder can't be greater than the number
       ;; if it's getting truncated towards zero.
       (when (and (eq (interval-range-info num) '-)
                  (numberp (interval-low num))
                  (interval-contains-p (interval-low num) rem))
         (setf (interval-low rem) (interval-low num)))
       rem))
    (-
     (let ((rem (interval-abs div)))
       ;; Divisor is always negative. The remainder is positive
       (setf (interval-low rem) 0)
       (when (numberp (interval-high rem))
         ;; The remainder never contains the lower bound.
         (setf (interval-high rem)
               (list (interval-high rem))))
       ;; The remainder can't be greater than the number
       ;; if it's getting truncated towards zero.
       (when (and (eq (interval-range-info num) '+)
                  (numberp (interval-high num))
                  (interval-contains-p (interval-high num) rem))
         (setf (interval-high rem) (interval-high num)))
       rem))
    (otherwise
     ;; The divisor can be positive or negative. All bets off. The
     ;; magnitude of remainder is the maximum value of the divisor.
     (let ((limit (type-bound-number (interval-high (interval-abs div)))))
       ;; The bound never reaches the limit, so make the interval open.
       (make-interval :low (if limit
                               (list (- limit))
                               limit)
                      :high (list limit))))))

#| Test cases
(ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
=> #S(INTERVAL :LOW 1 :HIGH 11)
(ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
=> #S(INTERVAL :LOW 1 :HIGH 11)
(ceiling-quotient-bound (make-interval :low 0.3 :high 10))
=> #S(INTERVAL :LOW 1 :HIGH 10)
(ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
=> #S(INTERVAL :LOW 1 :HIGH 10)
(ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
=> #S(INTERVAL :LOW 1 :HIGH 11)
(ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
=> #S(INTERVAL :LOW 1 :HIGH 11)
(ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
=> #S(INTERVAL :LOW -1 :HIGH 11)
(ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
=> #S(INTERVAL :LOW 0 :HIGH 11)
(ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
=> #S(INTERVAL :LOW -1 :HIGH 11)

(ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
=> #S(INTERVAL :LOW (-10.3) :HIGH 0)
(ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
=> #S(INTERVAL :LOW 0 :HIGH '(10.3))
(ceiling-rem-bound (make-interval :low -10 :high -2.3))
=> #S(INTERVAL :LOW 0 :HIGH (10))
(ceiling-rem-bound (make-interval :low 0.3 :high 10))
=> #S(INTERVAL :LOW (-10) :HIGH 0)
(ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
=> #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
(ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
=> #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
|#

(defun truncate-quotient-bound (quot)
  ;; For positive quotients, truncate is exactly like floor. For
  ;; negative quotients, truncate is exactly like ceiling. Otherwise,
  ;; it's the union of the two pieces.
  (case (interval-range-info quot)
    (+
     ;; just like FLOOR
     (floor-quotient-bound quot))
    (-
     ;; just like CEILING
     (ceiling-quotient-bound quot))
    (otherwise
     ;; Split the interval into positive and negative pieces, compute
     ;; the result for each piece and put them back together.
     (destructuring-bind (neg pos) (interval-split 0 quot t t)
       (interval-merge-pair (ceiling-quotient-bound neg)
                            (floor-quotient-bound pos))))))

(defun truncate-rem-bound (num div)
  ;; This is significantly more complicated than FLOOR or CEILING. We
  ;; need both the number and the divisor to determine the range. The
  ;; basic idea is to split the ranges of NUM and DEN into positive
  ;; and negative pieces and deal with each of the four possibilities
  ;; in turn.
  (case (interval-range-info num)
    (+
     (case (interval-range-info div)
       (+
        (floor-rem-bound num div))
       (-
        (ceiling-rem-bound num div))
       (otherwise
        (destructuring-bind (neg pos) (interval-split 0 div t t)
          (interval-merge-pair (truncate-rem-bound num neg)
                               (truncate-rem-bound num pos))))))
    (-
     (case (interval-range-info div)
       (+
        (ceiling-rem-bound num div))
       (-
        (floor-rem-bound num div))
       (otherwise
        (destructuring-bind (neg pos) (interval-split 0 div t t)
          (interval-merge-pair (truncate-rem-bound num neg)
                               (truncate-rem-bound num pos))))))
    (otherwise
     (destructuring-bind (neg pos) (interval-split 0 num t t)
       (interval-merge-pair (truncate-rem-bound neg div)
                            (truncate-rem-bound pos div))))))

;;; Derive useful information about the range. Returns three values:
;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
;;; - The abs of the minimal value (i.e. closest to 0) in the range.
;;; - The abs of the maximal value if there is one, or nil if it is
;;;   unbounded.
(defun numeric-range-info (low high)
  (cond ((and low (not (minusp low)))
         (values '+ low high))
        ((and high (not (plusp high)))
         (values '- (- high) (if low (- low) nil)))
        (t
         (values nil 0 (and low high (max (- low) high))))))

(defun integer-truncate-derive-type
       (number-low number-high divisor-low divisor-high)
  ;; The result cannot be larger in magnitude than the number, but the
  ;; sign might change. If we can determine the sign of either the
  ;; number or the divisor, we can eliminate some of the cases.
  (multiple-value-bind (number-sign number-min number-max)
      (numeric-range-info number-low number-high)
    (multiple-value-bind (divisor-sign divisor-min divisor-max)
        (numeric-range-info divisor-low divisor-high)
      (when (and divisor-max (zerop divisor-max))
        ;; We've got a problem: guaranteed division by zero.
        (return-from integer-truncate-derive-type t))
      (when (zerop divisor-min)
        ;; We'll assume that they aren't going to divide by zero.
        (incf divisor-min))
      (cond ((and number-sign divisor-sign)
             ;; We know the sign of both.
             (if (eq number-sign divisor-sign)
                 ;; Same sign, so the result will be positive.
                 `(integer ,(if divisor-max
                                (truncate number-min divisor-max)
                                0)
                           ,(if number-max
                                (truncate number-max divisor-min)
                                '*))
                 ;; Different signs, the result will be negative.
                 `(integer ,(if number-max
                                (- (truncate number-max divisor-min))
                                '*)
                           ,(if divisor-max
                                (- (truncate number-min divisor-max))
                                0))))
            ((eq divisor-sign '+)
             ;; The divisor is positive. Therefore, the number will just
             ;; become closer to zero.
             `(integer ,(if number-low
                            (truncate number-low divisor-min)
                            '*)
                       ,(if number-high
                            (truncate number-high divisor-min)
                            '*)))
            ((eq divisor-sign '-)
             ;; The divisor is negative. Therefore, the absolute value of
             ;; the number will become closer to zero, but the sign will also
             ;; change.
             `(integer ,(if number-high
                            (- (truncate number-high divisor-min))
                            '*)
                       ,(if number-low
                            (- (truncate number-low divisor-min))
                            '*)))
            ;; The divisor could be either positive or negative.
            (number-max
             ;; The number we are dividing has a bound. Divide that by the
             ;; smallest posible divisor.
             (let ((bound (truncate number-max divisor-min)))
               `(integer ,(- bound) ,bound)))
            (t
             ;; The number we are dividing is unbounded, so we can't tell
             ;; anything about the result.
             `integer)))))

(defun random-derive-type-aux (type)
  (let ((class (numeric-type-class type))
        (high (numeric-type-high type))
        (format (numeric-type-format type)))
    (make-numeric-type
         :class class
         :format format
         :low (coerce 0 (or format class 'real))
         :high (cond ((not high) nil)
                     ((eq class 'integer) (max (1- high) 0))
                     ((or (consp high) (zerop high)) high)
                     (t `(,high))))))

(defoptimizer (random derive-type) ((bound &optional state))
  (one-arg-derive-type bound #'random-derive-type-aux nil))

;;;; miscellaneous derive-type methods

(defoptimizer (integer-length derive-type) ((x))
  (one-arg-derive-type
   x
   (lambda (x-type)
     ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
     ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically.  Be
     ;; careful about LO or HI being NIL, though.  Also, if 0 is
     ;; contained in X, the lower bound is obviously 0.
     (flet ((min-il (a b)
              (min (integer-length a)
                   (integer-length b)))
            (max-il (a b)
              (max (integer-length a)
                   (integer-length b))))
       (let ((lo (numeric-type-low x-type))
             (hi (numeric-type-high x-type)))
         (cond ((and lo hi)
                (specifier-type `(integer ,(if (<= lo 0 hi)
                                               0
                                               (min-il lo hi))
                                          ,(max-il lo hi))))
               (lo
                (when (> lo 0)
                  (specifier-type `(integer ,(integer-length lo)))))
               (hi
                (when (< hi 0)
                  (specifier-type `(integer ,(integer-length hi)))))))))
   #'integer-length))

(defoptimizer (logcount derive-type) ((x))
  (one-arg-derive-type
   x
   (lambda (x-type)
     (let ((lo (numeric-type-low x-type))
           (hi (numeric-type-high x-type)))
       (cond ((and lo hi)
              (let ((adjust 0))
                (make-numeric-type :class 'integer
                                   :low
                                   (cond ((<= lo 0 hi)
                                          0)
                                         ((progn
                                            (when (minusp lo)
                                              (psetf lo (lognot hi)
                                                     hi (lognot lo)))
                                            (= (integer-length lo)
                                               (integer-length hi)))
                                          ;; Count the bits that are always the same
                                          (let ((first-diff (integer-length (logxor lo hi))))
                                            (psetf
                                             adjust (logcount (ash lo (- first-diff)))
                                             lo (ldb (byte first-diff 0) lo)
                                             hi (ldb (byte first-diff 0) hi))
                                            (+ adjust
                                               (if (= lo 0)
                                                   0
                                                   1))))
                                         ((= lo 0)
                                          0)
                                         (t
                                          1))
                                   :high
                                   (let ((l (max (integer-length lo)
                                                 (integer-length hi))))
                                     (+ adjust
                                        l
                                        ;; Only one number can have all the bits turned on
                                        (if (or (= hi (1- (ash 1 l)))
                                                (= lo (ash -1 l)))
                                            0
                                            -1))))))
             (lo
              (when (> lo 0)
                (specifier-type `(integer 1))))
             (hi
              (when (< hi -1)
                (specifier-type `(integer 1)))))))
   #'logcount))

(defoptimizer (isqrt derive-type) ((x))
  (one-arg-derive-type
   x
   (lambda (x-type)
     (let* ((lo (numeric-type-low x-type))
            (hi (numeric-type-high x-type))
            (lo-res (if (typep lo 'unsigned-byte)
                        (isqrt lo)
                        0))
            (hi-res (if (typep hi 'unsigned-byte)
                        (isqrt hi)
                        '*)))
       (specifier-type `(integer ,lo-res ,hi-res))))
   #'isqrt))

(defoptimizer (char-code derive-type) ((char))
  (let ((type (type-intersection (lvar-type char) (specifier-type 'character))))
    (cond ((member-type-p type)
           (specifier-type
            `(member
              ,@(loop for member in (member-type-members type)
                      when (characterp member)
                      collect (char-code member)))))
          ((sb-kernel::character-set-type-p type)
           (specifier-type
            `(or
              ,@(loop for (low . high)
                      in (character-set-type-pairs type)
                      collect `(integer ,low ,high)))))
          ((csubtypep type (specifier-type 'base-char))
           (specifier-type
            `(mod ,base-char-code-limit)))
          (t
           (specifier-type
            `(mod ,char-code-limit))))))

(defoptimizer (code-char derive-type) ((code))
  (one-arg-derive-type code
                       (lambda (type)
                         (let* ((lo (numeric-type-low type))
                                (hi (numeric-type-high type))
                                (type (specifier-type `(character-set ((,lo . ,hi))))))
                           (cond
                             ;; KLUDGE: when running on the host, we lose a slight amount
                             ;; of precision so that we don't have to "unparse" types
                             ;; that formally we can't, such as (CHARACTER-SET ((0
                             ;; . 0))).  -- CSR, 2004-10-06
                             #+sb-xc-host
                             ((csubtypep type (specifier-type 'standard-char)) type)
                             #+sb-xc-host
                             ((csubtypep type (specifier-type 'base-char))
                              (specifier-type 'base-char))
                             #+sb-xc-host
                             ((csubtypep type (specifier-type 'extended-char))
                              (specifier-type 'extended-char))
                             (t #+sb-xc-host (specifier-type 'character)
                                #-sb-xc-host type))))
                       nil))

(deftransform code-char ((code))
  (splice-fun-args code 'char-code 1)
  'code)

(deftransform char-code ((char))
  (splice-fun-args char 'code-char 1)
  'char)

(deftransform digit-char ((code &optional radix) ((integer 0 9) t))
  (if (or (not radix)
          (interval-< (type-approximate-interval (lvar-type code))
                      (type-approximate-interval (lvar-type radix))))
      `(code-char (+ code #.(char-code #\0)))
      (give-up-ir1-transform)))

(defoptimizer (digit-char-p derive-type) ((code &optional radix))
  (if radix
      (let ((max (type-approximate-interval (lvar-type radix))))
        (when (interval-high max)
          (specifier-type `(or null (mod ,(interval-high max))))))
      (specifier-type '(or null (mod 10)))))

(defoptimizer (values derive-type) ((&rest values))
  (make-values-type (mapcar #'lvar-type values)))

(deftransform digit-char-p ((char &optional (radix 10))
                            ((or base-char
                                 #+(and (not sb-xc-host) sb-unicode) (character-set ((0 . 1632))))
                             &optional (integer 2 10))
                            *
                            :important nil)
  `(let ((digit (- (char-code char) (char-code #\0))))
     (if (< -1 digit radix)
         digit)))

(deftransform digit-char-p ((char radix)
                            ((or base-char
                                 #+(and (not sb-xc-host) sb-unicode) (character-set ((0 . 1632))))
                             (constant-arg (integer 11)))
                            *
                            :important nil)
  `(let* ((code (char-code char))
          (digit (- code (char-code #\0))))
     (if (< -1 digit 10)
         digit
         (let ((weight (- (logior #x20 code) ;; downcase
                          (char-code #\a))))
           (if (< -1 weight (- radix 10))
               (+ weight 10))))))

(defun signum-derive-type-aux (type)
  (cond ((eq type (specifier-type 'ratio))
         (specifier-type '(or (eql 1) (eql -1))))
        ((eq (numeric-type-complexp type) :complex)
         (let* ((format (case (numeric-type-class type)
                          ((integer rational) 'single-float)
                          (t (numeric-type-format type))))
                (bound-format (or format 'float)))
           (make-numeric-type :class 'float
                              :format format
                              :complexp :complex
                              :low (coerce -1 bound-format)
                              :high (coerce 1 bound-format))))
        (t
         (let* ((interval (numeric-type->interval type))
                (range-info (interval-range-info interval))
                (contains-0-p (interval-contains-p 0 interval))
                (class (numeric-type-class type))
                (format (numeric-type-format type))
                (one (coerce 1 (or format class 'real)))
                (zero (coerce 0 (or format class 'real)))
                (minus-one (coerce -1 (or format class 'real)))
                (plus (make-numeric-type :class class :format format
                                         :low one :high one))
                (minus (make-numeric-type :class class :format format
                                          :low minus-one :high minus-one))
                ;; KLUDGE: here we have a fairly horrible hack to deal
                ;; with the schizophrenia in the type derivation engine.
                ;; The problem is that the type derivers reinterpret
                ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
                ;; 0d0) within the derivation mechanism doesn't include
                ;; -0d0.  Ugh.  So force it in here, instead.
                (zero (make-numeric-type :class class :format format
                                         :low (sb-xc:- zero) :high zero)))
           (let ((result
                   (case range-info
                     (+ (if contains-0-p (type-union plus zero) plus))
                     (- (if contains-0-p (type-union minus zero) minus))
                     (t (type-union minus zero plus)))))
             (if (eq (numeric-type-complexp type) :real)
                 result
                 (type-union result (make-numeric-type :class 'float
                                                       :complexp :complex
                                                       :low -1
                                                       :high 1))))))))

(defoptimizer (signum derive-type) ((num))
  (one-arg-derive-type num #'signum-derive-type-aux nil))

;;;; byte operations
;;;;
;;;; We try to turn byte operations into simple logical operations.
;;;; First, we convert byte specifiers into separate size and position
;;;; arguments passed to internal %FOO functions. We then attempt to
;;;; transform the %FOO functions into boolean operations when the
;;;; size and position are constant and the operands are fixnums.
;;;; The goal of the source-transform is to avoid consing a byte specifier
;;;; to immediately throw away. A more powerful framework could recognize
;;;; in IR1 when a constructor call flows to one or more accessors for the
;;;; constructed object and nowhere else (no mutators). If so, forwarding
;;;; the constructor arguments to their reads would generally solve this.
;;;; A transform approximates that, but fails when BYTE is produced by an
;;;; inline function and not a macro.
(flet ((xform (bytespec-form env int fun &optional (new nil setter-p))
         (let ((spec (handler-case (%macroexpand bytespec-form env)
                       (error ()
                         (return-from xform (values nil t))))))
           (if (and (consp spec) (eq (car spec) 'byte))
               (if (proper-list-of-length-p (cdr spec) 2)
                   (values `(,fun ,@(if setter-p (list new))
                                  ,(second spec) ,(third spec) ,int) nil)
                   ;; No point in compiling calls to BYTE-{SIZE,POSITION}
                   (values nil t)) ; T => "pass" (meaning "fail")
               (let ((new-temp (if setter-p (copy-symbol 'new)))
                     (byte (copy-symbol 'byte)))
                 (values `(let (,@(if new-temp `((,new-temp ,new)))
                                (,byte ,spec))
                            (,fun ,@(if setter-p (list new-temp))
                                  (byte-size ,byte) (byte-position ,byte) ,int))
                         nil))))))

  ;; DEFINE-SOURCE-TRANSFORM has no compile-time effect, so it's fine that
  ;; these 4 things are non-toplevel. (xform does not need to be a macro)
  (define-source-transform ldb (spec int &environment env)
    (xform spec env int '%ldb))

  (define-source-transform dpb (newbyte spec int &environment env)
    (xform spec env int '%dpb newbyte))

  (define-source-transform mask-field (spec int &environment env)
    (xform spec env int '%mask-field))

  (define-source-transform deposit-field (newbyte spec int &environment env)
    (xform spec env int '%deposit-field newbyte)))

(defoptimizer (%ldb derive-type) ((size posn num))
  ;; (logand (ash num (- posn)) (lognot (ash -1 size)))
  (let* ((shifted (two-arg-derive-type num posn
                                       (lambda (num posn same)
                                         (declare (ignore same))
                                         (ash-derive-type-aux num (%negate-derive-type-aux posn) nil))
                                       (lambda (num posn)
                                         (ash num (- posn)))))
         (minus-one (specifier-type '(eql -1)))
         (mask (one-arg-derive-type size
                                    (lambda (x)
                                      (lognot-derive-type-aux
                                       (ash-derive-type-aux minus-one x nil)))
                                    (lambda (x)
                                      (lognot (ash -1 x))))))
    (when (and shifted mask)
      (%two-arg-derive-type shifted mask #'logand-derive-type-aux #'logand))))

(defoptimizer (%mask-field derive-type) ((size posn num))
  (let ((size-high (nth-value 1 (integer-type-numeric-bounds (lvar-type size))))
        (posn-high (nth-value 1 (integer-type-numeric-bounds (lvar-type posn)))))
    (if (and size-high posn-high
             (<= (+ size-high posn-high) sb-vm:n-word-bits))
        (specifier-type `(unsigned-byte* ,(+ size-high posn-high)))
        (specifier-type 'unsigned-byte))))

(defoptimizer (%dpb derive-type) ((newbyte size posn int))
  ;; (let ((mask (lognot (ash -1 size))))
  ;;        (logior (ash (logand newbyte mask) posn)
  ;;                (logandc2 int (ash mask posn))))
  (block nil
    (let* ((minus-one (specifier-type '(eql -1)))
           (mask
             (or (one-arg-derive-type size
                                      (lambda (x)
                                        (lognot-derive-type-aux
                                         (ash-derive-type-aux minus-one x nil)))
                                      (lambda (x)
                                        (lognot (ash -1 x))))
                 (return)))
           (mask-shifted
             (or (%two-arg-derive-type mask (lvar-type posn)
                                       #'ash-derive-type-aux #'ash)
                 (return)))
           (int
             (or (%two-arg-derive-type (lvar-type int) mask-shifted
                                       (lambda (int mask same)
                                         (declare (ignore same))
                                         (%two-arg-derive-type
                                          int
                                          (lognot-derive-type-aux mask)
                                          #'logand-derive-type-aux
                                          #'logand))
                                       (lambda (int mask)
                                         (logandc2 int mask)))
                 (return)))
           (new-masked (or (%two-arg-derive-type mask (lvar-type newbyte)
                                                 #'logand-derive-type-aux #'logand)
                           (return)))
           (new
             (or (%two-arg-derive-type new-masked (lvar-type posn)
                                       #'ash-derive-type-aux #'ash)
                 (return))))
      (%two-arg-derive-type int new #'logior-derive-type-aux #'logior))))

(defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
  ;; (let ((mask (ash (lognot (ash -1 size)) posn)))
  ;;   (logior (logand newbyte mask)
  ;;           (logandc2 int mask)))
  (block nil
    (let* ((minus-one (specifier-type '(eql -1)))
           (mask
             (or (two-arg-derive-type size posn
                                      (lambda (size posn same)
                                        (declare (ignore same))
                                        (ash-derive-type-aux
                                         (lognot-derive-type-aux
                                          (ash-derive-type-aux minus-one size nil))
                                         posn nil))
                                      (lambda (x)
                                        (lognot (ash -1 x))))
                 (return)))
           (int
             (or (%two-arg-derive-type (lvar-type int) mask
                                       (lambda (int mask same)
                                         (declare (ignore same))
                                         (%two-arg-derive-type
                                          int
                                          (lognot-derive-type-aux mask)
                                          #'logand-derive-type-aux
                                          #'logand))
                                       (lambda (int mask)
                                         (logandc2 int mask)))
                 (return)))
           (new (or (%two-arg-derive-type mask (lvar-type newbyte)
                                          #'logand-derive-type-aux #'logand)
                    (return))))
      (%two-arg-derive-type int new #'logior-derive-type-aux #'logior))))

(deftransform %ldb ((size posn int) (fixnum fixnum integer) word :node node)
  "convert to inline logical operations"
  (let* ((size-max (nth-value 1 (integer-type-numeric-bounds (lvar-type size))))
         (posn-max (nth-value 1 (integer-type-numeric-bounds (lvar-type posn))))
         (width (and size-max posn-max
                     (+ size-max posn-max))))
    (cond
      ((or (csubtypep (lvar-type int) (specifier-type 'sb-vm:signed-word))
           (csubtypep (lvar-type int) (specifier-type 'word)))
       `(logandc2 (ash int (- posn))
                  (ash -1 size)))
      ((cond ((not width) nil)
             ((<= width sb-vm:n-fixnum-bits)
              `(%ldb size posn (mask-signed-field sb-vm:n-fixnum-bits int)))
             ((<= width sb-vm:n-word-bits)
              `(%ldb size posn (logand int most-positive-word)))))
      (t
       (delay-ir1-transform node :ir1-phases)
       (give-up-ir1-transform "not a word-sized integer")))))

(deftransform %mask-field ((size posn int) ((integer 0 #.sb-vm:n-word-bits) fixnum integer) word)
  "convert to inline logical operations"
  `(logand int (ash (ash ,most-positive-word (- size ,sb-vm:n-word-bits)) posn)))

;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
;;;   (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
;;; as the result type, as that would allow result types that cover
;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).

(deftransform %dpb ((new size posn int) ((constant-arg integer) (constant-arg integer) t t) * :important nil)
  (let* ((new (lvar-value new))
         (size (lvar-value size))
         (cut (ldb (byte size 0) new)))
    (cond ((/= new cut)
           `(%dpb ,cut ,size posn int))
          ((not (csubtypep (lvar-type posn) (specifier-type `(integer 0 (,(- sb-vm:n-fixnum-bits size))))))
           (give-up-ir1-transform))
          ((= (logcount new) size)
           (let ((uses (lvar-uses int)))
             ;; Move the cast after the ash for cast-externally-checkable-p to work.
             (when (cast-p uses)
               (delete-cast uses)))
           `(logior (ash new posn)
                    (the integer int)))
          ((zerop new)
           (let ((uses (lvar-uses int)))
             (when (cast-p uses)
               (delete-cast uses)))
           `(logandc2 int
                      (ash (ldb (byte size 0) -1) posn)))

          (t
           (give-up-ir1-transform)))))

(deftransform %dpb ((new size posn int) (:or (* word)
                                             (* sb-vm:signed-word)) * :node node)
  "convert to inline logical operations"
  (delay-ir1-transform node :ir1-phases)
  (or (and (constant-lvar-p size)
           (constant-lvar-p new)
           (let* ((size (lvar-value size))
                  (new (ldb (byte size 0) (lvar-value new))))
             (cond ((zerop new)
                    `(logandc2 int
                               (ash (ldb (byte size 0) -1) posn)))
                   ((= (logcount new) size)
                    `(logior int
                             (ash new posn))))))
      `(let ((mask (ldb (byte size 0) -1)))
         (logior (ash (logand new mask) posn)
                 (logandc2 int (ash mask posn))))))

(deftransform %deposit-field ((new size posn int) (:or (* word)
                                                       (* sb-vm:signed-word)))
  "convert to inline logical operations"
  `(let ((mask (ash (ldb (byte size 0) -1) posn)))
     (logior (logand new mask)
             (logand int (lognot mask)))))

(defoptimizer (mask-signed-field derive-type) ((size x))
  (let ((size (lvar-type size)))
    (if (numeric-type-p size)
        (let ((size-high (numeric-type-high size)))
          (if (and size-high (<= 1 size-high sb-vm:n-word-bits))
              (specifier-type `(signed-byte ,size-high))
              *universal-type*))
        *universal-type*)))

;;; Rightward ASH

(when-vop-existsp (:translate sb-kernel:%ash/right)
  (defun %ash/right (integer amount)
    (ash integer (- amount)))

  (deftransform ash ((integer amount) (sb-vm:signed-word (integer * 0)) *
                     :important nil)
    "Convert ASH of signed word to %ASH/RIGHT"
    (when (constant-lvar-p amount)
      (give-up-ir1-transform))
    (let ((use (lvar-uses amount)))
      (cond ((and (combination-p use)
                  (eql '%negate (lvar-fun-name (combination-fun use))))
             (splice-fun-args amount '%negate 1)
             `(lambda (integer amount)
                (declare (type unsigned-byte amount))
                (%ash/right integer (if (>= amount ,sb-vm:n-word-bits)
                                        ,(1- sb-vm:n-word-bits)
                                        amount))))
            (t
             `(%ash/right integer (if (<= amount ,(- sb-vm:n-word-bits))
                                      ,(1- sb-vm:n-word-bits)
                                      (- amount)))))))

  (deftransform ash ((integer amount) (word (integer * 0)) *
                     :important nil)
    "Convert ASH of word to %ASH/RIGHT"
    (when (constant-lvar-p amount)
      (give-up-ir1-transform))
    (let ((use (lvar-uses amount)))
      (cond ((and (combination-p use)
                  (eql '%negate (lvar-fun-name (combination-fun use))))
             (splice-fun-args amount '%negate 1)
             `(lambda (integer amount)
                (declare (type unsigned-byte amount))
                (if (>= amount ,sb-vm:n-word-bits)
                    0
                    (%ash/right integer amount))))
            (t
             `(if (<= amount ,(- sb-vm:n-word-bits))
                  0
                  (%ash/right integer (- amount)))))))

  (deftransform %ash/right ((integer amount) (integer (constant-arg unsigned-byte)))
    "Convert %ASH/RIGHT by constant back to ASH"
    `(ash integer ,(- (lvar-value amount))))

  (deftransform %ash/right ((integer amount) * * :node node)
    "strength reduce large variable right shift"
    (let ((return-type (single-value-type (node-derived-type node))))
      (cond ((type= return-type (specifier-type '(eql 0)))
             0)
            ((type= return-type (specifier-type '(eql -1)))
             -1)
            ((csubtypep return-type (specifier-type '(member -1 0)))
             `(ash integer ,(- sb-vm:n-word-bits)))
            (t
             (give-up-ir1-transform)))))

  (defun %ash/right-derive-type-aux (n-type shift same-arg)
    (declare (ignore same-arg))
    (or (and (or (csubtypep n-type (specifier-type 'sb-vm:signed-word))
                 (csubtypep n-type (specifier-type 'word)))
             (csubtypep shift (specifier-type `(mod ,sb-vm:n-word-bits)))
             (let ((n-low (numeric-type-low n-type))
                   (n-high (numeric-type-high n-type))
                   (s-low (numeric-type-low shift))
                   (s-high (numeric-type-high shift)))
               (make-numeric-type :class 'integer :complexp :real
                                  :low (when n-low
                                         (if (minusp n-low)
                                             (ash n-low (- s-low))
                                             (ash n-low (- s-high))))
                                  :high (when n-high
                                          (if (minusp n-high)
                                              (ash n-high (- s-high))
                                              (ash n-high (- s-low)))))))
        *universal-type*))

  (defoptimizer (%ash/right derive-type) ((n shift))
    (two-arg-derive-type n shift #'%ash/right-derive-type-aux #'%ash/right)))

(defmacro combination-typed-p (node name &rest types)
  (labels ((gen (type)
             (typecase type
               ((cons (eql :or))
                `(or ,@(loop for type in (cdr type)
                             collect
                             (gen type))))
               ((cons (eql :and))
                `(and ,@(loop for type in (cdr type)
                              collect
                              (gen type))))
               ((cons (eql :not))
                `(not ,(gen (cadr type))))
               (t
                `(csubtypep (lvar-type arg) (specifier-type ',type))))))
    `(and (combination-p ,node)
          (eql (lvar-fun-name (combination-fun ,node)) ',name)
          (let ((args (combination-args ,node)))
            ,@(loop for type in types
                    collect
                    `(let ((arg (pop args)))
                       (and arg
                            ,(gen type))))))))

(when-vop-existsp (:translate ash-inverted)
  (defun ash-inverted (integer amount)
    (ash integer (- amount)))

  (deftransform ash ((integer amount) (word t) *
                     :important nil :node node)
    (when (constant-lvar-p amount)
      (give-up-ir1-transform))
    (delay-ir1-transform node :ir1-phases)
    (let ((use (lvar-uses amount))
          (result-type (single-value-type (node-derived-type node)))
          (dest (node-dest node))
          truly-type)
      (unless (csubtypep result-type (specifier-type 'word))
        (cond ((or (combination-typed-p dest mask-signed-field (eql #. (1- sb-vm:n-word-bits)))
                   (combination-typed-p dest logand t word))
               (setf truly-type t))
              (t
               (give-up-ir1-transform))))
      (cond ((combination-typed-p use %negate (:and (:not (integer * 0))
                                                    (:or word
                                                         sb-vm:signed-word)))
             (splice-fun-args amount '%negate 1)
             (if truly-type
                 `(truly-the word (ash-inverted integer amount))
                 `(ash-inverted integer amount)))
            (t
             (give-up-ir1-transform)))))

  (deftransform ash ((integer amount) (sb-vm:signed-word t) *
                     :important nil :node node)
    (when (constant-lvar-p amount)
      (give-up-ir1-transform))
    (delay-ir1-transform node :ir1-phases)
    (let ((use (lvar-uses amount))
          (result-type (single-value-type (node-derived-type node)))
          (dest (node-dest node))
          truly-type)
      (unless (csubtypep result-type (specifier-type 'sb-vm:signed-word))
        (cond ((or (combination-typed-p dest mask-signed-field (eql #.(1- sb-vm:n-word-bits)))
                   (combination-typed-p dest logand t word))
               (setf truly-type t))
              (t
               (give-up-ir1-transform))))
      (cond ((combination-typed-p use %negate (:and (:not (integer * 0))
                                                    (:or word
                                                         sb-vm:signed-word)))
             (splice-fun-args amount '%negate 1)
             (if truly-type
                 `(truly-the sb-vm:signed-word (ash-inverted integer amount))
                 `(ash-inverted integer amount)))
            (t
             (give-up-ir1-transform))))))

;;; Not declaring it as actually being RATIO because it is used as one
;;; of the legs in the EXPT transform below and that may result in
;;; some unwanted type conflicts, e.g. (random (expt 2 (the integer y)))
(declaim (ftype (sfunction (integer) rational) reciprocate))
(defun reciprocate (x)
  (declare (optimize (safety 0)))
  (%make-ratio 1 x))

(deftransform expt ((base power) ((constant-arg unsigned-byte) integer))
  (let ((base (lvar-value base)))
    (cond ((/= (logcount base) 1)
           (give-up-ir1-transform))
          ((= base 1)
           1)
          (t
           `(let ((%denominator (ash 1 ,(if (= base 2)
                                            `(abs power)
                                            `(* (abs power) ,(1- (integer-length base)))))))
              (if (minusp power)
                  (reciprocate %denominator)
                  %denominator))))))

(deftransform expt ((base power) ((constant-arg unsigned-byte) unsigned-byte))
  (let ((base (lvar-value base)))
    (unless (= (logcount base) 1)
      (give-up-ir1-transform))
    `(ash 1 ,(if (= base 2)
                 `power
                 `(* power ,(1- (integer-length base)))))))

(defun integer-type-numeric-bounds (type)
  (typecase type
    ;; KLUDGE: this is not INTEGER-type-numeric-bounds
    (numeric-type (values (numeric-type-low type)
                          (numeric-type-high type)))
    (union-type
     (let ((low  nil)
           (high nil))
       (dolist (type (union-type-types type) (values low high))
         (unless (and (numeric-type-p type)
                      (eql (numeric-type-class type) 'integer))
           (return (values nil nil)))
         (let ((this-low (numeric-type-low type))
               (this-high (numeric-type-high type)))
           (unless (and this-low this-high)
             (return (values nil nil)))
           (setf low  (min this-low  (or low  this-low))
                 high (max this-high (or high this-high)))))))))

;;; Handle the case of a constant BOOLE-CODE.
(deftransform boole ((op x y) * *)
  "convert to inline logical operations"
  (unless (constant-lvar-p op)
    (give-up-ir1-transform "BOOLE code is not a constant."))
  (let ((control (lvar-value op)))
    (case control
      (#.boole-clr 0)
      (#.boole-set -1)
      (#.boole-1 'x)
      (#.boole-2 'y)
      (#.boole-c1 '(lognot x))
      (#.boole-c2 '(lognot y))
      (#.boole-and '(logand x y))
      (#.boole-ior '(logior x y))
      (#.boole-xor '(logxor x y))
      (#.boole-eqv '(logeqv x y))
      (#.boole-nand '(lognand x y))
      (#.boole-nor '(lognor x y))
      (#.boole-andc1 '(logandc1 x y))
      (#.boole-andc2 '(logandc2 x y))
      (#.boole-orc1 '(logorc1 x y))
      (#.boole-orc2 '(logorc2 x y))
      (t
       (abort-ir1-transform "~S is an illegal control arg to BOOLE."
                            control)))))

;;;; converting special case multiply/divide to shifts

;;; If arg is a constant power of two, turn * into a shift.
(deftransform * ((x y) (integer (constant-arg unsigned-byte)) * :node node)
  "convert x*2^k to shift"
  ;; Delay to make sure the surrounding casts are apparent.
  (delay-ir1-transform node :ir1-phases)
  (let* ((type (single-value-type (node-asserted-type node)))
         (y (lvar-value y))
         (len (1- (integer-length y))))
    (unless (or (not (csubtypep (lvar-type x) (specifier-type '(or word sb-vm:signed-word))))
                (csubtypep type (specifier-type 'word))
                (csubtypep type (specifier-type 'sb-vm:signed-word))
                (>= len sb-vm:n-word-bits))
      (give-up-ir1-transform))
    (unless (= y (ash 1 len))
      (give-up-ir1-transform))
    `(ash x ,len)))

;;; * deals better with ASH that overflows
(deftransform ash ((integer amount) ((or word sb-vm:signed-word)
                                     (constant-arg (integer 1 *))) *
                   :important nil
                   :node node)
  ;; Give modular arithmetic optimizers a chance
  (delay-ir1-transform node :ir1-phases)
  (let ((type (single-value-type (node-asserted-type node)))
        (shift (lvar-value amount)))
    (when (or (csubtypep type (specifier-type 'word))
              (csubtypep type (specifier-type 'sb-vm:signed-word))
              (>= shift sb-vm:n-word-bits))
      (give-up-ir1-transform))
    `(* integer ,(ash 1 shift))))

(defun cast-or-check-bound-type (node &optional fixnum)
  (multiple-value-bind (dest lvar) (immediately-used-let-dest (node-lvar node) node t)
    (cond ((cast-p dest)
           (and (cast-type-check dest)
                (single-value-type (cast-type-to-check dest))))
          ((and (combination-p dest)
                (equal (combination-fun-debug-name dest) '(transform-for check-bound))
                (eq (third (combination-args dest)) lvar))
           (if fixnum
               (specifier-type 'index)
               (specifier-type 'sb-vm:signed-word))))))

(defun overflow-transform (name x y node &optional (swap t))
  (unless (node-lvar node)
    (give-up-ir1-transform))
  (delay-ir1-transform node :ir1-phases)
  (let ((type (single-value-type (node-derived-type node))))
    (when (or (csubtypep type (specifier-type 'word))
              (csubtypep type (specifier-type 'sb-vm:signed-word)))
      (give-up-ir1-transform))
    (unless (and (or (csubtypep (lvar-type x) (specifier-type 'word))
                     (csubtypep (lvar-type x) (specifier-type 'sb-vm:signed-word)))
                 (or (csubtypep (lvar-type y) (specifier-type 'word))
                     (csubtypep (lvar-type y) (specifier-type 'sb-vm:signed-word))))
      (give-up-ir1-transform))
    (let* ((vops (fun-info-templates (fun-info-or-lose name)))
           (cast (or (cast-or-check-bound-type node)
                     (give-up-ir1-transform)))
           (result-type (type-intersection type cast)))
      (when (eq result-type *empty-type*)
        (give-up-ir1-transform))
      (flet ((subp (lvar type)
               (cond
                 ((not (constant-type-p type))
                  (csubtypep (lvar-type lvar) type))
                 ((not (constant-lvar-p lvar))
                  nil)
                 (t
                  (let ((value (lvar-value lvar))
                        (type (type-specifier (constant-type-type type))))
                    (if (typep type '(cons (eql satisfies)))
                        (funcall (second type) value)
                        (sb-xc:typep value type)))))))
        (loop with rotate
              for vop in vops
              for (x-type y-type) = (fun-type-required (vop-info-type vop))
              when (and (csubtypep result-type (single-value-type (fun-type-returns (vop-info-type vop))))
                        (neq x-type *universal-type*)
                        (neq y-type *universal-type*)
                        (or (and (subp x x-type)
                                 (subp y y-type))
                            (and swap
                                 (subp y x-type)
                                 (subp x y-type)
                                 (setf rotate t))))
              return `(%primitive ,(vop-info-name vop)
                                  ,@(if rotate
                                        '(y x)
                                        '(x y))
                                  ',(type-specifier cast))
              finally (give-up-ir1-transform))))))

(deftransform * ((x y) ((or word sb-vm:signed-word) (or word sb-vm:signed-word))
                 * :node node :important nil)
  (overflow-transform 'overflow* x y node))

(deftransform + ((x y) ((or word sb-vm:signed-word) (or word sb-vm:signed-word))
                 * :node node :important nil)
  (overflow-transform 'overflow+ x y node))

(deftransform - ((x y) ((or word sb-vm:signed-word) (or word sb-vm:signed-word))
                 * :node node :important nil)
  (overflow-transform 'overflow- x y node nil))

(deftransform ash ((x y) ((or word sb-vm:signed-word) (or word sb-vm:signed-word))
                 * :node node :important nil)
  (overflow-transform 'overflow-ash x y node nil))

(defun overflow-transform-unknown-x (name x y node &optional swap)
  (unless (node-lvar node)
    (give-up-ir1-transform))
  (delay-ir1-transform node :ir1-phases)
  (let ((type (single-value-type (node-derived-type node)))
        (x-type (lvar-type x))
        (y-type (lvar-type y)))
    (when (or (csubtypep type (specifier-type 'word))
              (csubtypep type (specifier-type 'sb-vm:signed-word))
              (if swap
                  (or
                   (csubtypep y-type (specifier-type 'word))
                   (csubtypep y-type (specifier-type 'sb-vm:signed-word)))
                  (or (csubtypep x-type (specifier-type 'word))
                      (csubtypep x-type (specifier-type 'sb-vm:signed-word)))))
      (give-up-ir1-transform))
    (let* ((vops (fun-info-templates (fun-info-or-lose name)))
           (cast (or (cast-or-check-bound-type node t)
                     (give-up-ir1-transform)))
           (result-type (type-intersection type cast)))
      (when (eq result-type *empty-type*)
        (give-up-ir1-transform))
      (multiple-value-bind (cast-low cast-high) (integer-type-numeric-bounds
                                                 (type-intersection (specifier-type 'integer) cast))
        (unless (and (fixnump cast-low)
                     (fixnump cast-high))
          (give-up-ir1-transform))
        (multiple-value-bind (y-low y-high) (if swap
                                                (integer-type-numeric-bounds x-type)
                                                (integer-type-numeric-bounds y-type))
          (unless (and (fixnump y-low)
                       (fixnump y-high))
            (give-up-ir1-transform))
          (let ((distance-low (- cast-low (1- most-negative-fixnum)))
                (distance-high (- cast-high (1+ most-positive-fixnum))))
            (unless (ecase name
                      (overflow+
                       (and (> y-low distance-high)
                            (< y-high distance-low)))
                      (overflow-
                       (if swap
                           (and (< y-high (+ (1+ most-positive-fixnum) cast-low))
                                (> y-low (+ (1- most-negative-fixnum) cast-high)))
                           (and (> (- y-high) distance-high)
                                (< (- y-low) distance-low))))
                      (overflow*
                       (or (> y-low 0)
                           (< y-high -1))))
              (give-up-ir1-transform)))
          (flet ((subp (lvar type)
                   (cond
                     ((not (constant-type-p type))
                      (csubtypep (lvar-type lvar) type))
                     ((not (constant-lvar-p lvar))
                      nil)
                     (t
                      (let ((value (lvar-value lvar))
                            (type (type-specifier (constant-type-type type))))
                        (if (typep type '(cons (eql satisfies)))
                            (funcall (second type) value)
                            (sb-xc:typep value type)))))))
            (loop for vop in vops
                  for (x-type y-type) = (fun-type-required (vop-info-type vop))
                  when (and (csubtypep result-type (single-value-type (fun-type-returns (vop-info-type vop))))
                            (if swap
                                (eq y-type *universal-type*)
                                (eq x-type *universal-type*))
                            (and (subp x x-type)
                                 (subp y y-type)))
                  return `(%primitive ,(vop-info-name vop)
                                      x y
                                      ',(type-specifier cast))
                  finally (give-up-ir1-transform))))))))

(deftransform + ((x y) (t (or word sb-vm:signed-word))
                 * :node node :important nil)
  (overflow-transform-unknown-x 'overflow+ x y node))

(deftransform + ((y x) ((or word sb-vm:signed-word) t)
                 * :node node :important nil)
  (overflow-transform-unknown-x 'overflow+ x y node))

(deftransform * ((x y) ((not ratio) (or word sb-vm:signed-word))
                 * :node node :important nil)
  (overflow-transform-unknown-x 'overflow* x y node))

(deftransform * ((y x) ((or word sb-vm:signed-word) (not ratio))
                 * :node node :important nil)
  (overflow-transform-unknown-x 'overflow* x y node))

(deftransform - ((x y) (t (or word sb-vm:signed-word))
                 * :node node :important nil)
  (overflow-transform-unknown-x 'overflow- x y node))

(deftransform - ((x y) ((or word sb-vm:signed-word) t)
                 * :node node :important nil)
  (overflow-transform-unknown-x 'overflow- x y node t))

(defun overflow-transform-1 (name x node)
  (unless (node-lvar node)
    (give-up-ir1-transform))
  (delay-ir1-transform node :ir1-phases)
  (let ((type (single-value-type (node-derived-type node))))
    (when (or (csubtypep type (specifier-type 'word))
              (csubtypep type (specifier-type 'sb-vm:signed-word)))
      (give-up-ir1-transform))
    (unless (and (or (csubtypep (lvar-type x) (specifier-type 'word))
                     (csubtypep (lvar-type x) (specifier-type 'sb-vm:signed-word))))
      (give-up-ir1-transform))
    (let* ((vops (fun-info-templates (fun-info-or-lose name)))
           (cast (or (cast-or-check-bound-type node)
                     (give-up-ir1-transform)))
           (result-type (type-intersection type cast)))
      (loop for vop in vops
            for (x-type) = (fun-type-required (vop-info-type vop))
            when (and (csubtypep result-type (single-value-type (fun-type-returns (vop-info-type vop))))
                      (neq x-type *universal-type*)
                      (csubtypep (lvar-type x) x-type))
            return `(%primitive ,(vop-info-name vop) x ',(type-specifier cast))
            finally (give-up-ir1-transform)))))

(deftransform %negate ((x) ((or word sb-vm:signed-word))
                       * :node node :important nil)
  (overflow-transform-1 'overflow-negate x node))

(defun template-translates (fun-name args result-type)
  (let ((vops (fun-info-templates (fun-info-or-lose fun-name))))
    (flet ((subp (lvar type)
             (cond
               ((not (constant-type-p type))
                (csubtypep (lvar-type lvar) type))
               ((not (constant-lvar-p lvar))
                nil)
               (t
                (let ((value (lvar-value lvar))
                      (type (type-specifier (constant-type-type type))))
                  (if (typep type '(cons (eql satisfies)))
                      (funcall (second type) value)
                      (sb-xc:typep value type)))))))
      (loop for vop in vops
            for params = (fun-type-required (vop-info-type vop))
            thereis (and (= (length args)
                            (length params))
                         (csubtypep result-type (single-value-type (fun-type-returns (vop-info-type vop))))
                         (loop for param in params
                               for arg in args
                               always (subp arg param)))))))

(deftransform floor ((number divisor) (integer integer) * :node node)
  (let ((truncate-type (truncate-derive-type-optimizer node)))
    (if (template-translates 'truncate (combination-args node) (single-value-type truncate-type))
        (let* ((rem-int (type-approximate-interval (lvar-type divisor)))
               (rem-type (let* ((low (interval-low rem-int))
                                (high (interval-high rem-int))
                                (rem-low (cond ((not low) '*)
                                               ((>= low 0)
                                                0)
                                               (t
                                                (1+ low))))
                                (rem-high (cond ((not high) '*)
                                                ((<= high 0)
                                                 0)
                                                (t
                                                 (1- high)))))
                           `(integer ,rem-low ,rem-high)))
               (n-int (type-approximate-interval (lvar-type number)))
               (quot-type (let* ((low (interval-low n-int))
                                 (high (interval-high n-int)))
                            (if (and low high)
                                (let ((max (max (abs low) (abs high))))
                                  `(integer ,(- max) ,max))
                                t))))
          `(multiple-value-bind (tru rem) (truncate number divisor)
             (if (if (minusp divisor)
                     (> rem 0)
                     (< rem 0))
                 (values (truly-the ,quot-type (1- tru)) (truly-the ,rem-type (+ rem divisor)))
                 (values tru (truly-the ,rem-type rem)))))
        (give-up-ir1-transform))))

(deftransform ceiling ((number divisor) (integer integer) * :node node)
  (let ((truncate-type (truncate-derive-type-optimizer node)))
    (if (template-translates 'truncate (combination-args node) (single-value-type truncate-type))
        (let* ((rem-int (type-approximate-interval (lvar-type divisor)))
               (rem-type (let* ((low (interval-low rem-int))
                                (high (interval-high rem-int))
                                (rem-low (cond ((not high) '*)
                                               ((<= high 1)
                                                0)
                                               (t (- 1 high))))
                                (rem-high (cond ((not low) '*)
                                                ((>= low -1)
                                                 0)
                                                (t
                                                 (- -1 low)))))
                           `(integer ,rem-low ,rem-high)))
               (n-int (type-approximate-interval (lvar-type number)))
               (quot-type (let* ((low (interval-low n-int))
                                 (high (interval-high n-int)))
                            (if (and low high)
                                (let ((max (max (abs low) (abs high))))
                                  `(integer ,(- max) ,max))
                                t))))
          `(multiple-value-bind (tru rem) (truncate number divisor)
             (if (if (minusp divisor)
                     (< rem 0)
                     (> rem 0))
                 (values (truly-the ,quot-type (+ tru 1))
                         (truly-the ,rem-type (- rem divisor)))
                 (values tru
                         (truly-the ,rem-type rem)))))
        (give-up-ir1-transform))))

(define-source-transform rem (number divisor)
  `(nth-value 1 (truncate ,number ,divisor)))

(define-source-transform mod (number divisor)
  `(nth-value 1 (floor ,number ,divisor)))

(deftransform ceiling ((number divisor) ((real (0) (1)) (integer * (0))) * :important nil)
  `(values 0 number))
(deftransform ceiling ((number divisor) ((real (-1) (0)) (integer (0) *)) * :important nil)
  `(values 0 number))

(deftransform floor ((number divisor) ((real (-1) (0)) (integer * (0))) * :important nil)
  `(values 0 number))
(deftransform floor ((number divisor) ((real (0) (1)) (integer (0) *)) * :important nil)
  `(values 0 number))

(deftransform truncate ((number divisor) ((and (real (-1) (1)) (not (eql -0d0)) (not (eql -0f0)))
                                          (and integer (not (eql 0))))
                        * :important nil)
  `(values 0 number))

;;; If arg is a constant power of two, turn FLOOR into a shift and
;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
;;; remainder.
(flet ((frob (y ceil-p)
         (let* ((y (lvar-value y))
                (y-abs (abs y))
                (len (1- (integer-length y-abs))))
           (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
             (give-up-ir1-transform))
           (let ((shift (- len))
                 (mask (1- y-abs))
                 (delta (if ceil-p (* (signum y) (1- y-abs)) 0)))
             `(let ((x (+ x ,delta)))
                ,(if (minusp y)
                     `(values (ash (- x) ,shift)
                              (- (- (logand (- x) ,mask)) ,delta))
                     `(values (ash x ,shift)
                              (- (logand x ,mask) ,delta))))))))
  (deftransform floor ((x y) (integer (constant-arg integer)) *)
    "convert division by 2^k to shift"
    (frob y nil))
  (deftransform ceiling ((x y) (integer (constant-arg integer)) *)
    "convert division by 2^k to shift"
    (frob y t)))

;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
(deftransform truncate ((x y) (integer (constant-arg integer)) *  :result result :node node)
  "convert division by 2^k to shift"
  (let* ((y (lvar-value y))
         (y-abs (abs y))
         (len (1- (integer-length y-abs))))
    (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
      (give-up-ir1-transform))
    (delay-ir1-transform node :ir1-phases)
    (let* ((rem (mv-bind-dest result 1))
           (zerop (combination-matches 'eq '(* 0) rem)))
      (let ((shift (- len))
            (mask (1- y-abs)))
        (cond (zerop
               (setf (node-derived-type node)
                     (values-specifier-type '(values integer unsigned-byte &optional)))
               (erase-lvar-type result)
               `(values
                 (values (truncate x y))
                 (logand x ,mask)))
              ((when-vop-existsp (:named sb-vm::truncate/signed-power-of-two)
                 (and (csubtypep (lvar-type x) (specifier-type 'sb-vm:signed-word))
                      (not (csubtypep (lvar-type x) (specifier-type 'word)))))
               (give-up-ir1-transform))
              (t
               `(if (minusp x)
                    (values ,(if (minusp y)
                                 `(ash (- x) ,shift)
                                 `(- (ash (- x) ,shift)))
                            (- (logand (- x) ,mask)))
                    (values ,(if (minusp y)
                                 `(- (ash x ,shift))
                                 `(ash x ,shift))
                            (logand x ,mask)))))))))

;;; Floats could be transformed if we had some declaration to ignore NaNs
(deftransform truncate ((x y) (rational (or (rational (0) *)
                                            (rational * (0))))
                        *
                        :important nil)
  (if (same-leaf-ref-p x y)
      `(values 1 0)
      (give-up-ir1-transform)))

(defoptimizer (truncate constraint-propagate)
    ((x y) node gen)
  (when (csubtypep (lvar-type y) (specifier-type 'rational))
    (let ((var (ok-lvar-lambda-var y gen)))
      (when var
        (list (list 'typep var (specifier-type '(eql 0)) t))))))

(defoptimizer (/ constraint-propagate)
    ((x y) node gen)
  (when (csubtypep (lvar-type y) (specifier-type 'rational))
    (let ((var (ok-lvar-lambda-var y gen)))
      (when var
        (list (list 'typep var (specifier-type '(eql 0)) t))))))

;;; Return an expression to calculate the integer quotient of X and
;;; constant Y, using multiplication, shift and add/sub instead of
;;; division. Both arguments must be unsigned, fit in a machine word and
;;; Y must neither be zero nor a power of two. The quotient is rounded
;;; towards zero.
;;; The algorithm is taken from the paper "Division by Invariant
;;; Integers using Multiplication", 1994 by Torbj\"{o}rn Granlund and
;;; Peter L. Montgomery, Figures 4.2 and 6.2, modified to exclude the
;;; case of division by powers of two.
;;; The algorithm includes an adaptive precision argument.  Use it, since
;;; we often have sub-word value ranges.  Careful, in this case, we need
;;; p s.t 2^p > n, not the ceiling of the binary log.
;;; Also, for some reason, the paper prefers shifting to masking.  Mask
;;; instead.  Masking is equivalent to shifting right, then left again;
;;; all the intermediate values are still words, so we just have to shift
;;; right a bit more to compensate, at the end.
;;;
;;; The following two examples show an average case and the worst case
;;; with respect to the complexity of the generated expression, under
;;; a word size of 64 bits:
;;;
;;; (UNSIGNED-DIV-TRANSFORMER 10 MOST-POSITIVE-WORD) ->
;;; (ASH (%MULTIPLY (LOGANDC2 X 0) 14757395258967641293) -3)
;;;
;;; (UNSIGNED-DIV-TRANSFORMER 7 MOST-POSITIVE-WORD) ->
;;; (LET* ((NUM X)
;;;        (T1 (%MULTIPLY NUM 2635249153387078803)))
;;;   (ASH (LDB (BYTE 64 0)
;;;             (+ T1 (ASH (LDB (BYTE 64 0)
;;;                             (- NUM T1))
;;;                        -1)))
;;;        -2))
;;;
(defun gen-unsigned-div-by-constant-expr (y max-x)
  (declare (type (integer 3 #.most-positive-word) y)
           (type word max-x))
  (aver (not (zerop (logand y (1- y)))))
  (labels ((ld (x)
             ;; the floor of the binary logarithm of (positive) X
             (integer-length (1- x)))
           (choose-multiplier (y precision)
             (do* ((l (ld y))
                   (shift l (1- shift))
                   (expt-2-n+l (expt 2 (+ sb-vm:n-word-bits l)))
                   (m-low (truncate expt-2-n+l y) (ash m-low -1))
                   (m-high (truncate (+ expt-2-n+l
                                        (ash expt-2-n+l (- precision)))
                                     y)
                           (ash m-high -1)))
                  ((not (and (< (ash m-low -1) (ash m-high -1))
                             (> shift 0)))
                   (values m-high shift)))))
    (let ((n (expt 2 sb-vm:n-word-bits))
          (precision (integer-length max-x))
          (shift1 0))
      (multiple-value-bind (m shift2)
          (choose-multiplier y precision)
        (when (and (>= m n) (evenp y))
          (setq shift1 (ld (logand y (- y))))
          (multiple-value-setq (m shift2)
            (choose-multiplier (/ y (ash 1 shift1))
                               (- precision shift1))))
        (cond ((>= m n)
               (flet ((word (x)
                        `(truly-the word ,x)))
                 `(let* ((num x)
                         (t1 (%multiply-high num ,(- m n))))
                    (ash ,(word `(+ t1 (ash ,(word `(- num t1))
                                            -1)))
                         ,(- 1 shift2)))))
              ((and (zerop shift1) (zerop shift2))
               (let ((max (truncate max-x y)))
                 ;; Explicit TRULY-THE needed to get the FIXNUM=>FIXNUM
                 ;; VOP.
                 `(truly-the (integer 0 ,max)
                             (%multiply-high x ,m))))
              (t
               `(ash (%multiply-high (logandc2 x ,(1- (ash 1 shift1))) ,m)
                     ,(- (+ shift1 shift2)))))))))

(when-vop-existsp (:translate %signed-multiply-high)
 (defun %signed-multiply-high (x y)
   (%signed-multiply-high x y))

 (defun gen-signed-truncate-by-constant-expr (y precision)
   (declare (type sb-vm:signed-word y)
            (type fixnum precision))
   (aver (not (zerop (logand y (1- y)))))
   (labels ((ld (x)
              ;; the floor of the binary logarithm of (positive) X
              (integer-length (1- x)))
            (choose-multiplier (y precision)
              (do* ((l (ld y))
                    (shift l (1- shift))
                    (expt-2-n+l (expt 2 (+ sb-vm:n-word-bits l)))
                    (m-low (truncate expt-2-n+l y) (ash m-low -1))
                    (m-high (truncate (+ expt-2-n+l
                                         (ash expt-2-n+l (- precision)))
                                      y)
                            (ash m-high -1)))
                   ((not (and (< (ash m-low -1) (ash m-high -1))
                              (> shift 0)))
                    (values m-high shift)))))
     (let ((n (expt 2 sb-vm:n-word-bits))
           (n-1 (expt 2 (1- sb-vm:n-word-bits))))
       (multiple-value-bind (m shift) (choose-multiplier (abs y) precision)
         (let ((code
                 (cond ((< m n-1)
                        `(ash (%signed-multiply-high x ,m)
                                 ,(- shift)))
                       (t
                        `(ash (truly-the sb-vm:signed-word
                                         (+ x (%signed-multiply-high x ,(- m n))))
                              ,(- shift))))))
           (if (minusp y)
               `(- (ash x (- 1 sb-vm:n-word-bits)) ,code)
               `(- ,code (ash x (- 1 sb-vm:n-word-bits)))))))))

 (deftransform truncate ((x y) (sb-vm:signed-word
                                (constant-arg sb-vm:signed-word))
                         *
                         :policy (and (> speed compilation-speed)
                                      (> speed space))
                         :node node
                         :important nil)
   "convert integer division to multiplication"
   (delay-ir1-transform node :ir1-phases)
   (let* ((y      (lvar-value y))
          (abs-y  (abs y))
          (x-type (lvar-type x)))
     (multiple-value-bind (precision max-x)
         (if (and (numeric-type-p x-type)
                  (numeric-type-high x-type)
                  (numeric-type-low x-type))
             (values (max (integer-length (numeric-type-high x-type))
                          (integer-length (numeric-type-low x-type)))
                     (max (numeric-type-high x-type)
                          (abs (numeric-type-low x-type))))
             (values (1- sb-vm:n-word-bits)
                     (expt 2 (1- sb-vm:n-word-bits))))
         ;; Division by zero, one or powers of two is handled elsewhere.
         (when (or (zerop (logand abs-y (1- abs-y)))
                   ;; Leave it for the unsigned transform
                   (and (plusp y)
                        (not (types-equal-or-intersect x-type
                                                       (specifier-type
                                                        '(and sb-vm:signed-word
                                                          (not unsigned-byte)))))))
           (give-up-ir1-transform))
      `(let* ((quot (truly-the
                     (integer ,(- (truncate max-x abs-y)) ,(truncate max-x abs-y))
                     ,(gen-signed-truncate-by-constant-expr y precision)))
              (rem (truly-the (integer ,(- 1 abs-y) ,(1- abs-y))
                              (- x (truly-the sb-vm:signed-word (* quot ,y))))))
         (values quot rem))))))

;;; The paper also has this,
;;; but it seems to overflow when adding to X
;; (defun gen-signed-floor-by-constant-expr (y max-x)
;;   (declare (type sb-vm:signed-word y)
;;            (type word max-x))
;;   (let ((trunc (gen-signed-truncate-by-constant-expr y
;;                                                      max-x)))
;;     (let ((y-sign (xsign y)))
;;       `(let* ((x-sign (xsign (logior x (+ x ,y-sign))))
;;               (x (+ ,y-sign (- x-sign) x)))
;;          (truly-the sb-vm:signed-word
;;                     (+ ,trunc
;;                        (logxor x-sign ,y-sign)))))))

(unless-vop-existsp (:translate %multiply-high)
                    (define-source-transform %multiply-high (x y)
                      `(values (sb-bignum:%multiply ,x ,y))))

;;; If the divisor is constant and both args are positive and fit in a
;;; machine word, replace the division by a multiplication and possibly
;;; some shifts and an addition. Calculate the remainder by a second
;;; multiplication and a subtraction. Dead code elimination will
;;; suppress the latter part if only the quotient is needed. If the type
;;; of the dividend allows to derive that the quotient will always have
;;; the same value, emit much simpler code to handle that. (This case
;;; may be rare but it's easy to detect and the compiler doesn't find
;;; this optimization on its own.)
(deftransform truncate ((x y) (word (constant-arg word))
                        *
                        :policy (and (> speed compilation-speed)
                                     (> speed space))
                        :node node
                        :important nil)
  "convert integer division to multiplication"
  (delay-ir1-transform node :ir1-phases)
  (let* ((y      (lvar-value y))
         (x-type (lvar-type x))
         (max-x  (or (and (numeric-type-p x-type)
                          (numeric-type-high x-type))
                     most-positive-word)))
    ;; Division by zero, one or powers of two is handled elsewhere.
    (when (zerop (logand y (1- y)))
      (give-up-ir1-transform))
    `(let* ((quot (truly-the (integer 0 ,(truncate max-x y))
                             ,(gen-unsigned-div-by-constant-expr y max-x)))
            (rem (truly-the (mod ,y)
                            (- x (* quot ,y)))))
       (values quot rem))))

;;; No-op when Y is greater than X
(deftransform truncate ((x y) (rational rational) * :important nil)
  (flet ((strip (x)
           (if (consp x)
               (car x)
               x)))
    (let* ((x-interval (or (type-approximate-interval (lvar-type x))
                           (give-up-ir1-transform)))
           (x-low (strip (interval-low x-interval)))
           (x-high (strip (interval-high x-interval)))
           (y-interval (or (type-approximate-interval (lvar-type y))
                           (give-up-ir1-transform)))
           (y-low (strip (interval-low y-interval)))
           (y-high (strip (interval-high y-interval)))
           (x-max (and x-low x-high
                       (max (abs x-low) (abs x-high))))
           (y-min (cond ((and y-low
                              (> y-low 0))
                         y-low)
                        ((and y-high
                              (< y-high 0))
                         (abs y-high)))))
      (if (and x-max y-min
               (> y-min x-max))
          `(values 0 x)
          (give-up-ir1-transform)))))


;;;; arithmetic and logical identity operation elimination

;;; Flush calls to various arith functions that convert to the
;;; identity function or a constant.
(macrolet ((def (name identity result)
             `(deftransform ,name ((x y) (t (constant-arg (member ,identity))) *)
                "fold identity operations"
                ',result)))
  (def ash 0 x)
  (def logand -1 x)
  (def logand 0 0)
  (def logior 0 x)
  (def logior -1 -1)
  (def logxor -1 (lognot x))
  (def logxor 0 x)
  (def logandc2 0 x))

(defun least-zero-bit (x)
  (and (/= x -1)
       (1- (integer-length (logxor x (1+ x))))))

(deftransform logand ((x y) (t (constant-arg integer)) *)
  "fold identity operation"
  (let* ((y (lvar-value y))
         (width (or (least-zero-bit y) '*)))
    (unless (and (neq width 0) ; (logand x 0) handled elsewhere
                 (csubtypep (lvar-type x)
                            (specifier-type `(unsigned-byte ,width))))
      (give-up-ir1-transform))
    'x))

(deftransform logand ((x y) (t (constant-arg integer)) word
                      :node node :important nil)
  ;; Reduce constant width
  (let* ((high (interval-high (type-approximate-interval (single-value-type (node-asserted-type node)))))
         (mask (lvar-value y))
         (cut (ldb (byte (integer-length high) 0) mask)))
    (if (= cut mask)
        (give-up-ir1-transform)
        `(logand x ,cut))))

(deftransform logandc2 ((x y) ((constant-arg (eql -1)) t) *)
  `(lognot y))

(deftransform logandc2 ((x y) * * :important nil :node node)
  (delay-ir1-transform node :ir1-phases)
  (if (and (not (or (csubtypep (lvar-type x) (specifier-type 'word))
                    (csubtypep (lvar-type x) (specifier-type 'sb-vm:signed-word))))
           (csubtypep (lvar-type y) (specifier-type 'fixnum))
           (csubtypep (one-arg-derive-type y #'lognot-derive-type-aux #'lognot)
                      (specifier-type 'fixnum)))
      `(logand x (lognot y))
      (give-up-ir1-transform)))

(deftransform mask-signed-field ((size x) ((constant-arg t) t) *)
  "fold identity operation"
  (let ((size (lvar-value size)))
    (cond ((= size 0) 0)
          ((csubtypep (lvar-type x) (specifier-type `(signed-byte ,size)))
           'x)
          (t
           (give-up-ir1-transform)))))

(deftransform logior ((x y) (t (constant-arg integer)) *)
  "fold identity operation"
  (let* ((y (lvar-value y))
         (width (or (least-zero-bit (lognot y))
                    (give-up-ir1-transform)))) ; (logior x 0) handled elsewhere
    (unless (csubtypep (lvar-type x)
                       (specifier-type `(integer ,(- (ash 1 width)) -1)))
      (give-up-ir1-transform))
    'x))

;;; Pick off easy association opportunities for constant folding.
;;; More complicated stuff that also depends on commutativity
;;; (e.g. (f (f x k1) (f y k2)) => (f (f x y) (f k1 k2))) should
;;; probably be handled with a more general tree-rewriting pass.
(macrolet ((def (operator &key (type 'integer) (folded (list operator)))
             `(deftransform ,operator ((x z) (,type (constant-arg ,type)))
                ,(format nil "associate ~A/~A of constants"
                         operator folded)
                (binding* ((node  (if (lvar-has-single-use-p x)
                                      (lvar-use x)
                                      (give-up-ir1-transform)))
                           (folded (or (and (combination-p node)
                                            (car (memq (lvar-fun-name
                                                        (combination-fun node))
                                                       ',folded)))
                                       (give-up-ir1-transform)))
                           (y   (second (combination-args node)))
                           (nil (or (constant-lvar-p y)
                                    (give-up-ir1-transform)))
                           (y   (lvar-value y)))
                  (unless (typep y ',type)
                    (give-up-ir1-transform))
                  (splice-fun-args x folded 2)
                  `(lambda (x y z)
                     (declare (ignore y z))
                     ;; (operator (folded x y) z)
                     ;; == (operator x (folded z y))
                     (,',operator x (,folded ,(lvar-value z) ,y)))))))
  (def logand)
  (def logior)
  (def logxor)
  (def logtest :folded (logand))
  (def + :type rational :folded (+ -))
  (def * :type rational :folded (* /)))

(deftransform * ((x y) (rational (constant-arg ratio)))
  (let ((y (/ (lvar-value y))))
    (if (integerp y)
        `(/ x ,y)
        (give-up-ir1-transform))))

(deftransform / ((x y) (rational (constant-arg ratio)))
  (let ((y (/ (lvar-value y))))
    (if (integerp y)
        `(* x ,y)
        (give-up-ir1-transform))))

(deftransform mask-signed-field ((width x) ((constant-arg unsigned-byte) t))
  "Fold mask-signed-field/mask-signed-field of constant width"
  (binding* ((node  (if (lvar-has-single-use-p x)
                        (lvar-use x)
                        (give-up-ir1-transform)))
             (nil (or (combination-p node)
                      (give-up-ir1-transform)))
             (nil (or (eq (lvar-fun-name (combination-fun node))
                          'mask-signed-field)
                      (give-up-ir1-transform)))
             (x-width (first (combination-args node)))
             (nil (or (constant-lvar-p x-width)
                      (give-up-ir1-transform)))
             (x-width (lvar-value x-width)))
    (unless (typep x-width 'unsigned-byte)
      (give-up-ir1-transform))
    (splice-fun-args x 'mask-signed-field 2)
    `(lambda (width x-width x)
       (declare (ignore width x-width))
       (mask-signed-field ,(min (lvar-value width) x-width) x))))

;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
;;; (* 0 -4.0) is -0.0.
(deftransform - ((x y) ((constant-arg (member 0)) rational) *)
  "convert (- 0 x) to negate"
  '(%negate y))
(deftransform * ((x y) (rational (constant-arg (member 0))) *)
  "convert (* x 0) to 0"
  0)

(deftransform %negate ((x) (rational))
  "Eliminate %negate/%negate of rationals"
  (splice-fun-args x '%negate 1)
  '(the rational x))

(deftransform %negate ((x) (number))
  "Combine %negate/*"
  (let ((use (lvar-uses x))
        arg)
    (unless (and (combination-p use)
                 (eql '* (lvar-fun-name (combination-fun use)))
                 (constant-lvar-p (setf arg (second (combination-args use))))
                 (numberp (setf arg (lvar-value arg))))
      (give-up-ir1-transform))
    (splice-fun-args x '* 2)
    `(lambda (x y)
       (declare (ignore y))
       (* x ,(- arg)))))

;;; Return T if in an arithmetic op including lvars X and Y, the
;;; result type is not affected by the type of X. That is, Y is at
;;; least as contagious as X.
(defun not-more-contagious (x y)
  (let ((x (lvar-type x))
        (y (lvar-type y)))
    (cond
      ((csubtypep x (specifier-type 'rational)))
      ((csubtypep x (specifier-type 'single-float))
       (csubtypep y (specifier-type 'float)))
      ((csubtypep x (specifier-type 'double-float))
       (csubtypep y (specifier-type 'double-float))))))

(sb-xc:deftype exact-number ()
  '(or rational (complex rational)))

;;; Fold (+ x 0).
;;;
;;; Only safely applicable for exact numbers. For floating-point
;;; x, one would have to first show that neither x or y are signed
;;; 0s, and that x isn't an SNaN.
(deftransform + ((x y) (exact-number (constant-arg (eql 0))) *)
  "fold zero arg"
  'x)

;;; Fold (- x 0).
(deftransform - ((x y) (exact-number (constant-arg (eql 0))) *)
  "fold zero arg"
  'x)

;;; Fold (OP x +/-1)
;;; If a signaling nan somehow got here without signaling anything then
;;; why signal now.
(macrolet
    ((def (name result minus-result type)
         `(deftransform ,name ((x y)
                               (,type (constant-arg (member 1 -1))))
            "fold identity operations"
            (if (minusp (lvar-value y)) ',minus-result ',result))))
  (def * x (%negate x) number)
  (def / x (%negate x) number)
  (def expt x (/ 1 x) (or exact-number real))) ;; (expt #c(2d0 2d0) 1) doesn't return #c(2d0 2d0)

(deftransform + ((x y) (number number))
  (cond ((splice-fun-args y '%negate 1 nil)
         `(- x y))
        ((splice-fun-args x '%negate 1 nil)
         `(- y x))
        (t
         (give-up-ir1-transform))))

(deftransform - ((x y) (number number))
  (splice-fun-args y '%negate 1)
  `(+ x y))

;;; Fold (expt x n) into multiplications for small integral values of
;;; N; convert (expt x 1/2) to sqrt.
(deftransform expt ((x y) (t (constant-arg real)) *)
  "recode as multiplication or sqrt"
  (let ((val (lvar-value y)))
    ;; If Y would cause the result to be promoted to the same type as
    ;; Y, we give up. If not, then the result will be the same type
    ;; as X, so we can replace the exponentiation with simple
    ;; multiplication and division for small integral powers.
    (unless (not-more-contagious y x)
      (give-up-ir1-transform))
    (cond ((zerop val)
           (let ((x-type (lvar-type x)))
             (cond ((csubtypep x-type (specifier-type '(or rational
                                                        (complex rational))))
                    '1)
                   ((csubtypep x-type (specifier-type 'real))
                    `(if (rationalp x)
                         1
                         (float 1 x)))
                   ((csubtypep x-type (specifier-type 'complex))
                    ;; both parts are float
                    `(1+ (* x ,val)))
                   (t (give-up-ir1-transform)))))
          ((= val 2) '(* x x))
          ((= val -2) '(/ (* x x)))
          ((= val 3) '(* x x x))
          ((= val -3) '(/ (* x x x)))
          ((= val 1/2) '(sqrt x))
          ((= val -1/2) '(/ (sqrt x)))
          (t (give-up-ir1-transform)))))

(deftransform expt ((x y) ((constant-arg (member -1 -1.0 -1.0d0)) integer) *)
  "recode as an ODDP check"
  (let ((val (lvar-value x)))
    (if (eql -1 val)
        '(- 1 (* 2 (logand 1 y)))
        `(if (oddp y)
             ,val
             ,(abs val)))))

(deftransform expt ((x y) ((or rational (complex rational)) integer) * :node node)
  (delay-ir1-transform node :ir1-phases)
  `(sb-kernel::intexp x y))

(macrolet ((def (name)
             `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
                                   *)
                "fold zero arg"
                0)))
  (def ash)
  (def /))

(macrolet ((def (name)
             `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
                                   *)
                "fold zero arg"
                '(values 0 0))))
  (def truncate)
  (def round)
  (def floor)
  (def ceiling))

(macrolet ((def (name &optional float)
             (let ((x (if float '(float x) 'x)))
               `(deftransform ,name ((x y) (integer (constant-arg (member 1 -1)))
                                     *)
                  "fold division by 1"
                  `(values ,(if (minusp (lvar-value y))
                                '(%negate ,x)
                                ',x)  0)))))
  (def truncate)
  (def round)
  (def floor)
  (def ceiling)
  (def ftruncate t)
  (def fround t)
  (def ffloor t)
  (def fceiling t))


;;;; character operations

(deftransform char-equal ((a b) (base-char base-char) *
                          :policy (>= speed space) :node node)
  "open code"
  (delay-ir1-transform node :constraint)
  '(let* ((ac (char-code a))
          (bc (char-code b))
          (sum (logxor ac bc)))
     (or (zerop sum)
         (when (eql sum #x20)
           (let ((sum (+ ac bc)))
             (or (and (> sum 161) (< sum 213))
                 #-sb-unicode
                 (and (> sum 415) (< sum 461))
                 #-sb-unicode
                 (and (> sum 463) (< sum 477))))))))

#+sb-unicode
(deftransform char-equal ((a b) (base-char character) *
                          :policy (>= speed space) :node node)
  "open code"
  (delay-ir1-transform node :constraint)
  '(let* ((ac (char-code a))
          (bc (char-code b))
          (sum (logxor ac bc)))
     (or (zerop sum)
         (when (eql sum #x20)
           (let ((sum (+ ac bc)))
             (and (> sum 161) (< sum 213)))))))

#+sb-unicode
(deftransform char-equal ((a b) (character base-char) *
                          :policy (>= speed space) :node node)
  "open code"
  (delay-ir1-transform node :constraint)
  '(let* ((ac (char-code a))
          (bc (char-code b))
          (sum (logxor ac bc)))
     (or (zerop sum)
         (when (eql sum #x20)
           (let ((sum (+ ac bc)))
             (and (> sum 161) (< sum 213)))))))

(defun transform-constant-char-equal (a b &optional (op 'char=))
  (let ((char (lvar-value b)))
    (if (both-case-p char)
        (let ((reverse (if (upper-case-p char)
                           (char-downcase char)
                           (char-upcase char))))
          `(or (,op ,a ,char)
               (,op ,a ,reverse)))
        `(,op ,a ,char))))

(deftransform char-equal ((a b) (t (constant-arg character)) *
                          :node node)
  (transform-constant-char-equal 'a b))

(defun no-case-character-type-p (type)
  (and (typep type 'character-set-type)
       (loop for (start . end) in (character-set-type-pairs type)
             always (loop for c from start to end
                          always (not (and #+sb-xc-host
                                           (or (< 31 c 127)
                                               (= c 10))
                                           (both-case-p (code-char c))))))))

(deftransform char-equal ((a b))
  (cond ((same-leaf-ref-p a b) t)
        ((or (no-case-character-type-p (lvar-type a))
             (no-case-character-type-p (lvar-type b)))
         `(char= a b))
        (t
         (give-up-ir1-transform))))

(deftransform char-upcase ((x) (base-char))
  "open code"
  '(let ((n-code (char-code x)))
     (if (or (and (> n-code #o140)      ; Octal 141 is #\a.
                  (< n-code #o173))     ; Octal 172 is #\z.
             (and (> n-code #o337)
                  (< n-code #o367))
             (and (> n-code #o367)
                  (< n-code #o377)))
         (code-char (logxor #x20 n-code))
         x)))

(deftransform char-downcase ((x) (base-char))
  "open code"
  '(let ((n-code (char-code x)))
     (if (or (and (> n-code 64)         ; 65 is #\A.
                  (< n-code 91))        ; 90 is #\Z.
             (and (> n-code 191)
                  (< n-code 215))
             (and (> n-code 215)
                  (< n-code 223)))
         (code-char (logxor #x20 n-code))
         x)))

;;;; equality predicate transforms

;;; If X and Y are the same leaf, then the result is true. Otherwise,
;;; if there is no intersection between the types of the arguments,
;;; then the result is definitely false.
(deftransform char= ((x y) * *)
  "Simple equality transform"
  (let ((use (lvar-uses x))
        arg)
    (declare (ignorable use arg))
    (cond
      ((same-leaf-ref-p x y) t)
      ((not (types-equal-or-intersect (lvar-type x) (lvar-type y)))
       nil)
      ;; Reduce (eq (%instance-ref x i) Y) to 1 instruction
      ;; if possible, but do not defer the memory load unless doing
      ;; so can have no effect, i.e. Y is a constant or provably not
      ;; effectful. For now, just handle constant Y.
      ((and (vop-existsp :translate %instance-ref-eq)
            (constant-lvar-p y)
            (combination-p use)
            (almost-immediately-used-p x use)
            (eql '%instance-ref (lvar-fun-name (combination-fun use)))
            (constant-lvar-p (setf arg (second (combination-args use))))
            (typep (lvar-value arg) '(unsigned-byte 16)))
       (splice-fun-args x '%instance-ref 2)
       `(lambda (obj i val) (%instance-ref-eq obj i val)))
      (t (give-up-ir1-transform)))))

(defun transform-eq-on-words (fun x y)
  (flet ((try-sword (x y x-v y-v)
           (when (not (or (csubtypep (lvar-type x) (specifier-type 'fixnum))
                          (csubtypep (lvar-type y) (specifier-type 'word))))
             `(if (#+64-bit sb-kernel:signed-byte-64-p
                   #-64-bit sb-kernel:signed-byte-32-p
                   ,y-v)
                  (,fun ,x-v (truly-the sb-vm:signed-word ,y-v))
                  nil)))
         (try-word (x y x-v y-v)
           (when (not (or (csubtypep (lvar-type x) (specifier-type 'fixnum))
                          (csubtypep (lvar-type y) (specifier-type 'sb-vm:signed-word))))
             `(if (#+64-bit sb-kernel:unsigned-byte-64-p
                   #-64-bit sb-kernel:unsigned-byte-32-p
                   ,y-v)
                  (,fun ,x-v (truly-the word ,y-v))
                  nil)))
         (do-float (x-v y-v predicate type)
           `(if (,predicate ,y-v)
                (,fun ,x-v (truly-the ,type ,y-v))
                nil)))
    (let ((x-swordp (csubtypep (lvar-type x) (specifier-type 'sb-vm:signed-word)))
          (y-swordp (csubtypep (lvar-type y) (specifier-type 'sb-vm:signed-word))))
      (cond ((and x-swordp (not y-swordp))
             (try-sword x y 'x 'y))
            ((and y-swordp (not x-swordp))
             (try-sword y y 'y 'x))
            (t
             (let ((x-wordp (csubtypep (lvar-type x) (specifier-type 'word)))
                   (y-wordp (csubtypep (lvar-type y) (specifier-type 'word))))
               (cond ((and x-wordp (not y-wordp))
                      (try-word x y 'x 'y))
                     ((and y-wordp (not x-wordp))
                      (try-word y y 'y 'x))
                     ((eq fun 'eql)
                      (let ((x-dfp (csubtypep (lvar-type x) (specifier-type 'double-float)))
                            (y-dfp (csubtypep (lvar-type y) (specifier-type 'double-float))))
                        (cond ((and x-dfp (not y-dfp))
                               (do-float 'x 'y 'double-float-p 'double-float))
                              ((and y-dfp (not x-dfp))
                               (do-float 'y 'x 'double-float-p 'double-float))
                              #-64-bit
                              (t
                               (let ((x-sfp (csubtypep (lvar-type x) (specifier-type 'single-float)))
                                     (y-sfp (csubtypep (lvar-type y) (specifier-type 'single-float))))
                                 (cond ((and x-sfp (not y-sfp))
                                        (do-float 'x 'y 'single-float-p 'single-float))
                                       ((and y-sfp (not x-sfp))
                                        (do-float 'y 'x 'single-float-p 'single-float)))))))))))))))

(deftransform eq ((x y) * *)
  "Simple equality transform"
  (let ((use (lvar-uses x))
        arg)
    (declare (ignorable use arg))
    (cond
      ((same-leaf-ref-p x y) t)
      ((not (types-equal-or-intersect (lvar-type x) (lvar-type y)))
       nil)
      ;; Reduce (eq (%instance-ref x i) Y) to 1 instruction
      ;; if possible, but do not defer the memory load unless doing
      ;; so can have no effect, i.e. Y is a constant or provably not
      ;; effectful. For now, just handle constant Y.
      ((and (vop-existsp :translate %instance-ref-eq)
            (constant-lvar-p y)
            (combination-p use)
            (almost-immediately-used-p x use)
            (eql '%instance-ref (lvar-fun-name (combination-fun use)))
            (constant-lvar-p (setf arg (second (combination-args use))))
            (typep (lvar-value arg) '(unsigned-byte 16)))
       (splice-fun-args x '%instance-ref 2)
       `(lambda (obj i val) (%instance-ref-eq obj i val)))
      ((transform-eq-on-words 'eq x y))
      (t (give-up-ir1-transform)))))

;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also
;;; try to convert to a type-specific predicate or EQ:
;;; -- If both args are characters, convert to CHAR=. This is better than
;;;    just converting to EQ, since CHAR= may have special compilation
;;;    strategies for non-standard representations, etc.
;;; -- If either arg is definitely a fixnum, we check to see if X is
;;;    constant and if so, put X second. Doing this results in better
;;;    code from the backend, since the backend assumes that any constant
;;;    argument comes second.
;;; -- If either arg is definitely not a number or a fixnum, then we
;;;    can compare with EQ.
;;; -- Otherwise, we try to put the arg we know more about second. If X
;;;    is constant then we put it second. If X is a subtype of Y, we put
;;;    it second. These rules make it easier for the back end to match
;;;    these interesting cases.
(deftransform eql ((x y) * * :node node)
  "convert to simpler equality predicate"
  (let* ((x-type (lvar-type x))
         (y-type (lvar-type y))
         (char-type (specifier-type 'character)))
    (cond
      ((same-leaf-ref-p x y) t)
      ((not (types-equal-or-intersect x-type y-type))
       nil)
      ((and (csubtypep x-type char-type)
            (csubtypep y-type char-type))
       '(char= x y))
      ((or (eq-comparable-type-p x-type) (eq-comparable-type-p y-type))
       '(eq y x))
      ((transform-eq-on-words 'eql x y))
      (t
       (give-up-ir1-transform)))))

(defun array-type-dimensions-mismatch (x-type y-type)
  (and (csubtypep x-type (specifier-type 'array))
       (csubtypep y-type (specifier-type 'array))
       (let ((x-dims (sb-kernel::ctype-array-union-dimensions x-type))
             (y-dims (sb-kernel::ctype-array-union-dimensions y-type)))
         (unless (or (eq (car x-dims) '*)
                     (eq (car y-dims) '*))
           (loop with simple = (and (csubtypep x-type (specifier-type 'simple-array))
                                    (csubtypep y-type (specifier-type 'simple-array)))
                 for x-dim in x-dims
                 never
                 (loop for y-dim in y-dims
                       thereis
                       (and (= (length x-dim)
                               (length y-dim))
                            ;; Can compare dimensions only for simple
                            ;; arrays due to fill-pointer and
                            ;; adjust-array.
                            (or (not simple)
                                (loop for x in x-dim
                                      for y in y-dim
                                      always (or (eq x '*)
                                                 (eq y '*)
                                                 (= x y)))))))))))

;;; Only a simple array will always remain non-empty
(defun array-type-non-empty-p (type)
  (and (csubtypep type (specifier-type 'simple-array))
       (let ((dimensions (ctype-array-dimensions type)))
         (and (consp dimensions)
              (every (lambda (dim)
                       (typep dim '(integer 1)))
                     dimensions)))))

(defun equal-comparable-types (x y)
  (flet ((both-intersect-p (type)
           (let ((ctype (specifier-type type)))
             (and (types-equal-or-intersect x ctype)
                  (types-equal-or-intersect y ctype)))))
    (or (both-intersect-p 'string)
        ;; Even though PATHNAME doesn't have any parameters it
        ;; may appear in an EQL type.
        (both-intersect-p 'pathname)
        (both-intersect-p 'bit-vector)
        (both-intersect-p 'cons))))

(defun equalp-comparable-types (x y)
  (flet ((both-intersect-p (type)
           (let ((ctype (specifier-type type)))
             (and (types-equal-or-intersect x ctype)
                  (types-equal-or-intersect y ctype)))))
    (or (both-intersect-p 'number)
        (both-intersect-p 'array)
        (both-intersect-p 'character)
        (both-intersect-p 'cons)
        ;; Even though these don't have any parameters they may
        ;; appear in an EQL type.
        (both-intersect-p 'pathname)
        (both-intersect-p 'instance)
        (both-intersect-p 'hash-table))))

(defun equalp-eql-comparable-types (x y)
  (flet ((both-intersect-p (type)
           (let ((ctype (specifier-type type)))
             (and (types-equal-or-intersect x ctype)
                  (types-equal-or-intersect y ctype)))))
    (not (or (and (let ((int-x (type-intersection x (specifier-type 'number)))
                        (int-y (type-intersection y (specifier-type 'number))))
                    (and (neq int-x *empty-type*)
                         (neq int-y *empty-type*)
                         (not
                          (and (csubtypep int-x (specifier-type 'integer))
                               (csubtypep int-y (specifier-type 'integer)))))))
             (both-intersect-p 'array)
             (both-intersect-p 'character)
             (both-intersect-p 'cons)
             (both-intersect-p 'pathname)
             (both-intersect-p 'instance)
             (both-intersect-p 'hash-table)))))

(defun equal-remove-incompatible-types (x y &optional equalp)
  (block nil
    (let ((n-x (type-intersection x (specifier-type 'number)))
          (n-y (type-intersection y (specifier-type 'number))))
      (unless (or (eq n-x *empty-type*)
                  (eq n-y *empty-type*))
        (let ((i-x (type-approximate-interval n-x))
              (i-y (type-approximate-interval n-y)))
          (when (and i-x i-y
                     (interval-/= i-x i-y))
            (return
              (values (type-difference x n-x)
                      (type-difference y n-y)))))))
    (let ((a-x (type-intersection x (specifier-type 'array)))
          (a-y (type-intersection y (specifier-type 'array))))
      (when (not (or (eq a-x *empty-type*)
                     (eq a-y *empty-type*)))
        (when (or (not equalp)
                  ;; At least one array has to be longer than 0
                  ;; and not adjustable, because #() and "" are equalp.
                  (array-type-non-empty-p a-x)
                  (array-type-non-empty-p a-y))
          (let ((x-et (type-array-element-type a-x))
                (y-et (type-array-element-type a-y)))
            (when (and (neq x-et *wild-type*)
                       (neq y-et *wild-type*)
                       (not (types-equal-or-intersect x-et y-et)))
              (return
                (values (type-difference x a-x)
                        (type-difference y a-y))))))
        (when (array-type-dimensions-mismatch a-x a-y)
          (return
            (values (type-difference x a-x)
                    (type-difference y a-y))))))
    (values x y)))

;;; similarly to the EQL transform above, we attempt to constant-fold
;;; or convert to a simpler predicate: mostly we have to be careful
;;; with strings and bit-vectors.
(deftransform equal ((x y) * *)
  "convert to simpler equality predicate"
  (let ((x-type (lvar-type x))
        (y-type (lvar-type y)))
    (flet ((unroll-constant (x y)
             (when (constant-lvar-p x)
               (let ((value (lvar-value x)))
                 (cond ((equal value "")
                        `(and (stringp ,y)
                              (zerop (length ,y))))
                       ((typep value '(cons (or fixnum symbol character) null))
                        `(and (,(if (car value)
                                    'listp
                                    'consp)
                               ,y)
                              (eq (car ,y) ',(car value))
                              (null (cdr ,y)))))))))
      (cond ((same-leaf-ref-p x y) t)
            ((array-type-dimensions-mismatch x-type y-type)
             nil)
            ((unroll-constant x 'y))
            ((unroll-constant y 'x))
            (t
             (flet ((try (x-type y-type)
                      (flet ((both-csubtypep (type)
                               (let ((ctype (specifier-type type)))
                                 (and (csubtypep x-type ctype)
                                      (csubtypep y-type ctype))))
                             (some-csubtypep (type)
                               (let ((ctype (specifier-type type)))
                                 (or (csubtypep x-type ctype)
                                     (csubtypep y-type ctype))))
                             (non-equal-array-p (type)
                               (and (csubtypep type (specifier-type 'array))
                                    (let ((equal-types (specifier-type '(or bit character)))
                                          (element-types (ctype-array-specialized-element-types type)))
                                      (and (neq element-types *wild-type*)
                                           (notany (lambda (x)
                                                     (csubtypep x equal-types))
                                                   element-types))))))
                        (cond
                          ((or (some-csubtypep 'symbol)
                               (some-csubtypep 'character))
                           `(eq x y))
                          ((both-csubtypep 'string)
                           '(string= x y))
                          ((both-csubtypep 'bit-vector)
                           '(bit-vector-= x y))
                          ((both-csubtypep 'pathname)
                           '(pathname= x y))
                          ((or (non-equal-array-p x-type)
                               (non-equal-array-p y-type))
                           '(eq x y))
                          ((multiple-value-bind (x-type y-type)
                               (equal-remove-incompatible-types x-type y-type)
                             (cond
                               ((or (eq x-type *empty-type*)
                                    (eq y-type *empty-type*))
                                nil)
                               ((equal-comparable-types x-type y-type)
                                :give-up)
                               ((types-equal-or-intersect x-type y-type)
                                '(eql x y)))))))))
               (let ((r (try x-type y-type)))
                 (if (eq r :give-up)
                     (let* ((not-x-type (type-difference x-type (specifier-type 'null)))
                            (r (try not-x-type y-type)))
                       (cond ((not r)
                              `(eq x y))
                             ((neq r :give-up)
                              `(when x
                                 ,r))
                             (t
                              (let* ((not-y-type (type-difference y-type (specifier-type 'null)))
                                     (r (try x-type not-y-type)))
                                (cond ((not r)
                                       `(eq x y))
                                      ((neq r :give-up)
                                       `(when y
                                          ,r))
                                      (t
                                       (let ((r (try not-x-type not-y-type)))
                                         (if (neq r :give-up)
                                             `(if (null x)
                                                  (null y)
                                                  (and y
                                                       ,r))
                                             (give-up-ir1-transform)))))))))
                     r))))))))

(deftransform equalp ((x y) * *)
  "convert to simpler equality predicate"
  (let ((x-type (lvar-type x))
        (y-type (lvar-type y)))
    (flet ((unroll-constant (x y)
             (when (constant-lvar-p x)
               (let ((value (lvar-value x)))
                 (cond ((typep value '(simple-array * (0)))
                        `(and (vectorp ,y)
                              (zerop (length ,y))))
                       ((typep value '(cons symbol null))
                        `(and (,(if (car value)
                                    'listp
                                    'consp)
                               ,y)
                              (eq (car ,y) ',(car value))
                              (null (cdr ,y))))
                       ((and (proper-or-dotted-list-p value)
                             (loop with cdr = value
                                   while (consp cdr)
                                   always (symbolp (pop cdr))))
                        `(equal x y)))))))
      (cond ((same-leaf-ref-p x y) t)
            ((array-type-dimensions-mismatch x-type y-type)
             nil)
            ((unroll-constant x 'y))
            ((unroll-constant y 'x))
            (t
             (flet ((try (x-type y-type)
                      (flet ((both-csubtypep (type)
                               (let ((ctype (specifier-type type)))
                                 (and (csubtypep x-type ctype)
                                      (csubtypep y-type ctype))))
                             (some-csubtypep (type)
                               (let ((ctype (specifier-type type)))
                                 (or (csubtypep x-type ctype)
                                     (csubtypep y-type ctype))))
                             (transform-char-equal (x y)
                               (and (constant-lvar-p y)
                                    (characterp (lvar-value y))
                                    (transform-constant-char-equal x y 'eq))))
                        (cond
                          ((some-csubtypep 'symbol)
                           `(eq x y))
                          ((transform-char-equal 'x y))
                          ((transform-char-equal 'y x))
                          ((both-csubtypep 'string)
                           '(string-equal x y))
                          ((both-csubtypep 'bit-vector)
                           '(bit-vector-= x y))
                          ((and (both-csubtypep 'array)
                                (not (types-equal-or-intersect x-type (specifier-type '(or string bit-vector))))
                                (not (types-equal-or-intersect y-type (specifier-type '(or string bit-vector)))))
                           `(sb-impl::array-equalp x y))
                          ((both-csubtypep 'pathname)
                           '(pathname= x y))
                          ((both-csubtypep 'character)
                           '(char-equal x y))
                          ((both-csubtypep 'number)
                           '(= x y))
                          ((both-csubtypep 'hash-table)
                           '(hash-table-equalp x y))
                          ;; TODO: two instances of the same type should dispatch
                          ;; directly to the EQUALP-IMPL function in the layout.
                          (t
                           (multiple-value-bind (x-type y-type)
                               (equal-remove-incompatible-types x-type y-type t)
                             (cond
                               ((or (eq x-type *empty-type*)
                                    (eq y-type *empty-type*))
                                nil)
                               ((types-equal-or-intersect x-type y-type)
                                (if (equalp-eql-comparable-types x-type y-type)
                                    '(eql x y)
                                    :give-up))
                               ((equalp-comparable-types x-type y-type)
                                :give-up))))))))
               (let ((r (try x-type y-type)))
                 (if (eq r :give-up)
                     (let* ((not-x-type (type-difference x-type (specifier-type 'null)))
                            (r (try not-x-type y-type)))
                       (cond ((not r)
                              `(eq x y))
                             ((neq r :give-up)
                              `(when x
                                 ,r))
                             (t
                              (let* ((not-y-type (type-difference y-type (specifier-type 'null)))
                                     (r (try x-type not-y-type)))
                                (cond ((not r)
                                       `(eq x y))
                                      ((neq r :give-up)
                                       `(when y
                                          ,r))
                                      (t
                                       (let ((r (try not-x-type not-y-type)))
                                         (if (neq r :give-up)
                                             `(if (null x)
                                                  (null y)
                                                  (and y
                                                       ,r))
                                             (give-up-ir1-transform)))))))))
                     r))))))))

;;; Convert to EQL if both args are rational and complexp is specified
;;; and the same for both.
(deftransform = ((x y) (number number) *)
  "open code"
  (let* ((x-type (lvar-type x))
         (y-type (lvar-type y)))
    ;; Inline if the intersecting type is simple:
    ;; (= (the (or single-float integer) x) 1.5)
    ;; => (and (single-float-p x) (= x 1.5))
    (labels ((transform (x-type y-type x y type test)
               (when (and (csubtypep x-type type)
                          (not (and (eq test 'fixnump)
                                    (csubtypep y-type (specifier-type 'rational))))
                          (not (csubtypep y-type type))
                          (let ((excluded (type-difference y-type type)))
                            (and (neq excluded *empty-type*)
                                 (let ((x-int (type-approximate-interval x-type))
                                       (y-int (type-approximate-interval excluded)))
                                   (and x-int
                                        (or (and y-int
                                                 (interval-/= x-int y-int))
                                            (and (interval-float-p x-int)
                                                 (csubtypep excluded (specifier-type 'integer)))))))))
                 `(and (,test ,y)
                       (= ,x (truly-the ,(type-specifier type) ,y)))))
             (intersecting (type test)
               (or (transform x-type y-type 'x 'y type test)
                   (transform y-type x-type 'y 'x type test))))
      (cond ((intersecting (specifier-type 'single-float) 'single-float-p))
            ((intersecting (specifier-type 'double-float) 'double-float-p))
            ((intersecting (specifier-type 'fixnum) 'fixnump))
            ;; Convert to EQL if both args are rational and complexp is specified
            ;; and the same for both.
            ((or (and (csubtypep x-type (specifier-type 'float))
                      (csubtypep y-type (specifier-type 'float)))
                 (and (csubtypep x-type (specifier-type '(complex float)))
                      (csubtypep y-type (specifier-type '(complex float))))
                 (and (vop-existsp :named sb-vm::=/complex-single-float)
                      (csubtypep x-type (specifier-type '(or single-float (complex single-float))))
                      (csubtypep y-type (specifier-type '(or single-float (complex single-float)))))
                 (and (vop-existsp :named sb-vm::=/complex-double-float)
                      (csubtypep x-type (specifier-type '(or double-float (complex double-float))))
                      (csubtypep y-type (specifier-type '(or double-float (complex double-float))))))
             ;; They are both floats. Leave as = so that -0.0 is
             ;; handled correctly.
             (give-up-ir1-transform))
            ((or (and (csubtypep x-type (specifier-type 'rational))
                      (csubtypep y-type (specifier-type 'rational)))
                 (and (csubtypep x-type
                                 (specifier-type '(complex rational)))
                      (csubtypep y-type
                                 (specifier-type '(complex rational)))))
             ;; They are both rationals and complexp is the same.
             ;; Convert to EQL.
             '(eql x y))
            ((or (and (csubtypep x-type (specifier-type 'real))
                      (csubtypep y-type
                                 (specifier-type '(complex rational))))
                 (and (csubtypep y-type (specifier-type 'real))
                      (csubtypep x-type
                                 (specifier-type '(complex rational)))))
             ;; Can't be EQL since imagpart can't be 0.
             nil)
            (t
             (give-up-ir1-transform
              "The operands might not be the same type."))))))

(defun maybe-float-lvar-p (lvar)
  (neq *empty-type* (type-intersection (specifier-type 'float)
                                       (lvar-type lvar))))

#+(or arm arm64 x86-64 x86)
(flet ((maybe-invert (op inverted x y)
         (cond
           ((and (not (vop-existsp :translate >=))
                 (csubtypep (lvar-type x) (specifier-type 'float))
                 (csubtypep (lvar-type y) (specifier-type 'float)))
            `(or (,op x y) (= x y)))
           ;; Don't invert if either argument can be a float (NaNs)
           ((or (maybe-float-lvar-p x) (maybe-float-lvar-p y))
            (give-up-ir1-transform))
           (t
            `(if (,inverted x y) nil t)))))
  (deftransform >= ((x y) (number number) * :node node)
    "invert or open code"
    (maybe-invert '> '< x y))
  (deftransform <= ((x y) (number number) * :node node)
    "invert or open code"
    (maybe-invert '< '> x y)))

;;; FIXME: for some reason these do not survive cold-init with <=
#-(or arm arm64 x86-64 x86)
(flet ((maybe-invert (node op inverted x y)
         (cond
           ;; Don't invert if either argument can be a float (NaNs)
           ((or (maybe-float-lvar-p x) (maybe-float-lvar-p y))
            (delay-ir1-transform node :constraint)
            `(or (,op x y) (= x y)))
           (t
            `(if (,inverted x y) nil t)))))
  (deftransform >= ((x y) (number number) * :node node)
    "invert or open code"
    (maybe-invert node '> '< x y))
  (deftransform <= ((x y) (number number) * :node node)
    "invert or open code"
    (maybe-invert node '< '> x y)))

;;; Make sure any constant arg is second.
(macrolet ((def (name inverse)
             `(deftransform ,name ((x y))
                (if (and (constant-lvar-p x)
                         (not (constant-lvar-p y)))
                    `(,',inverse y x)
                    (give-up-ir1-transform)))))
  (def = =)
  (def < >)
  (def > <)
  (def <= >=)
  (def >= <=))

;;; See whether we can statically determine (< X Y) using type
;;; information. If X's high bound is < Y's low, then X < Y.
;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
;;; NIL).
(macrolet ((def (name reflexive-p surely-true surely-false)
             `(defoptimizer (,name derive-type) ((x y))
                (if (and (same-leaf-ref-p x y)
                         ;; For non-reflexive functions we don't need
                         ;; to worry about NaNs: (non-ref-op NaN NaN) => false,
                         ;; but with reflexive ones we don't know...
                         ,@(when reflexive-p
                             '((and (not (maybe-float-lvar-p x))
                                (not (maybe-float-lvar-p y))))))
                    (specifier-type '(eql ,reflexive-p))
                    (multiple-value-bind (ix x-complex)
                        (type-approximate-interval (lvar-type x))
                      (when ix
                        (multiple-value-bind (iy y-complex)
                            (type-approximate-interval (lvar-type y))
                          (when iy
                            (cond ((and (or (not x-complex)
                                            (interval-contains-p 0 ix))
                                        (or (not y-complex)
                                            (interval-contains-p 0 iy))
                                        ,surely-true)
                                   (specifier-type '(eql t)))
                                  (,surely-false
                                   (specifier-type '(eql nil))))))))))))
  (def =  t (interval-= ix iy) (interval-/= ix iy))
  (def <  nil (interval-< ix iy) (interval->= ix iy))
  (def >  nil (interval-< iy ix) (interval->= iy ix))
  (def <= t (interval->= iy ix) (interval-< iy ix))
  (def >= t (interval->= ix iy) (interval-< ix iy)))

(defun ir1-transform-char< (x y first second inverse)
  (cond
    ((same-leaf-ref-p x y) nil)
    ;; If we had interval representation of character types, as we
    ;; might eventually have to to support 2^21 characters, then here
    ;; we could do some compile-time computation as in transforms for
    ;; < above. -- CSR, 2003-07-01
    ((and (constant-lvar-p first)
          (not (constant-lvar-p second)))
     `(,inverse y x))
    (t (give-up-ir1-transform))))

(deftransform char< ((x y) (character character) *)
  (ir1-transform-char< x y x y 'char>))

(deftransform char> ((x y) (character character) *)
  (ir1-transform-char< y x x y 'char<))

;;;; converting N-arg comparisons
;;;;
;;;; We convert calls to N-arg comparison functions such as < into
;;;; two-arg calls. This transformation is enabled for all such
;;;; comparisons in this file. If any of these predicates are not
;;;; open-coded, then the transformation should be removed at some
;;;; point to avoid pessimization.

;;; This function is used for source transformation of N-arg
;;; comparison functions other than inequality.  If the call has two
;;; args, then we pass or return a negated test as appropriate. If it
;;; is a degenerate one-arg call, then we transform to code that
;;; returns true. Otherwise, we bind all the arguments and expand into
;;; a bunch of IFs.
(defun multi-compare (predicate args not-p type)
  (let ((nargs (length args)))
    (cond ((< nargs 1) (values nil t))
          ((= nargs 1) `(progn (the ,type ,@args) t))
          ((= nargs 2)
           (if not-p
               `(if (,predicate ,(first args) ,(second args)) nil t)
               (values nil t)))
          (t
           (do* ((i (1- nargs) (1- i))
                 (last nil current)
                 (current (gensym) (gensym))
                 (vars (list current) (cons current vars))
                 (result t (if not-p
                               `(if (,predicate ,current ,last)
                                    nil ,result)
                               `(if (,predicate ,current ,last)
                                    ,result nil))))
                ((zerop i)
                 `((lambda ,vars
                     ;; the first two arguments will be checked by the comparison function.
                     (declare (type ,type ,@(subseq vars 2)))
                     ,result)
                   ,@args)))))))

(define-source-transform = (&rest args) (multi-compare '= args nil 'number))
(define-source-transform < (&rest args) (multi-compare '< args nil 'real))
(define-source-transform > (&rest args) (multi-compare '> args nil 'real))
;;; We cannot do the inversion for >= and <= here, since both
;;;   (< NaN X) and (> NaN X)
;;; are false, and we don't have type-information available yet. The
;;; deftransforms for two-argument versions of >= and <= takes care of
;;; the inversion to > and < when possible.
(define-source-transform <= (&rest args) (multi-compare '<= args nil 'real))
(define-source-transform >= (&rest args) (multi-compare '>= args nil 'real))

(define-source-transform char= (&rest args) (multi-compare 'char= args nil
                                                           'character))
(define-source-transform char< (&rest args) (multi-compare 'char< args nil
                                                           'character))
(define-source-transform char> (&rest args) (multi-compare 'char> args nil
                                                           'character))
(define-source-transform char<= (&rest args) (multi-compare 'char> args t
                                                            'character))
(define-source-transform char>= (&rest args) (multi-compare 'char< args t
                                                            'character))

(define-source-transform char-equal (&rest args)
  (multi-compare 'char-equal args nil 'character))
(define-source-transform char-lessp (&rest args)
  (multi-compare 'char-lessp args nil 'character))
(define-source-transform char-greaterp (&rest args)
  (multi-compare 'char-greaterp args nil 'character))
(define-source-transform char-not-greaterp (&rest args)
  (multi-compare 'char-greaterp args t 'character))
(define-source-transform char-not-lessp (&rest args)
  (multi-compare 'char-lessp args t 'character))

;;; This function does source transformation of N-arg inequality
;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
;;; arg cases. If there are more than two args, then we expand into
;;; the appropriate n^2 comparisons only when speed is important.
(declaim (ftype (function (symbol list t) *) multi-not-equal))
(defun multi-not-equal (predicate args type)
  (let ((nargs (length args)))
    (cond ((< nargs 1) (values nil t))
          ((= nargs 1) `(progn (the ,type ,@args) t))
          ((= nargs 2)
           `(if (,predicate ,(first args) ,(second args)) nil t))
          ((or (> (length args) 50)
               (not (policy *lexenv*
                        (and (>= speed space)
                             (>= speed compilation-speed)))))
           (values nil t))
          (t
           (let ((vars (make-gensym-list nargs)))
             `((lambda ,vars
                 (declare (type ,type ,@vars))
                 (block nil
                   (tagbody
                      ,@(loop for (var . rest) on vars
                              nconc (loop for var2 in rest
                                          collect `(if (,predicate ,var ,var2)
                                                       (go return-nil))))
                      (return-from nil t)
                    return-nil
                      (return-from nil nil))))
               ,@args))))))

(define-source-transform /= (&rest args)
  (multi-not-equal '= args 'number))
(define-source-transform char/= (&rest args)
  (multi-not-equal 'char= args 'character))
(define-source-transform char-not-equal (&rest args)
  (multi-not-equal 'char-equal args 'character))

;;; Expand MAX and MIN into the obvious comparisons.
(define-source-transform max (arg0 &rest rest)
  (if (null rest)
      `(values (the real ,arg0))
      (labels ((expand (arg0 &rest rest)
                 (if (null rest)
                     arg0
                     (once-only ((arg0 arg0)
                                 (minrest (apply #'expand rest)))
                       `(if (> ,minrest ,arg0)
                            ,minrest
                            ,arg0)))))
        (apply #'expand arg0 rest))))

(define-source-transform min (arg0 &rest rest)
  (if (null rest)
      `(values (the real ,arg0))
      (labels ((expand (arg0 &rest rest)
                 (if (null rest)
                     arg0
                     (once-only ((arg0 arg0)
                                 (maxrest (apply #'expand rest)))
                       `(if (< ,maxrest ,arg0)
                            ,maxrest
                            ,arg0)))))
        (apply #'expand arg0 rest))))

;;; Simplify some cross-type comparisons
(macrolet ((def (comparator round)
             `(progn
                (deftransform ,comparator
                    ((x y) (rational (constant-arg float)))
                  "open-code RATIONAL to FLOAT comparison"
                  (let ((y (lvar-value y)))
                    (when (float-infinity-or-nan-p y)
                      (give-up-ir1-transform))
                    (setf y (rational y))
                    `(,',comparator
                      x ,(if (csubtypep (lvar-type x)
                                        (specifier-type 'integer))
                             (,round y)
                             y))))
                (deftransform ,comparator
                    ((x y) (integer (constant-arg ratio)))
                  "open-code INTEGER to RATIO comparison"
                  `(,',comparator x ,(,round (lvar-value y)))))))
  (def < ceiling)
  (def > floor))

(macrolet ((def (comparator not-equal round)
             `(progn
                (deftransform ,comparator
                    ((x y) (rational (constant-arg float)))
                  "open-code RATIONAL to FLOAT comparison"
                  (let ((y (lvar-value y)))
                    (when (float-infinity-or-nan-p y)
                      (give-up-ir1-transform))
                    (setf y (rational y))
                    (multiple-value-bind (qout rem)
                        (if (csubtypep (lvar-type x)
                                       (specifier-type 'integer))
                            (,round y)
                            (values y 0))
                      `(,(if (zerop rem)
                             ',comparator
                             ',not-equal)
                        x ,qout))))
                (deftransform ,comparator
                    ((x y) (integer (constant-arg ratio)))
                  "open-code INTEGER to RATIO comparison"
                  `(,',not-equal x ,(,round (lvar-value y)))))))
  (def <= < ceiling)
  (def >= > floor))

(macrolet ((def (name x y type-x type-y &optional non-fixnum)
             `(deftransform ,name ((,x ,y) (,type-x ,type-y) * :node node :important nil)
                (cond ((or (csubtypep (lvar-type i) (specifier-type 'word))
                           (csubtypep (lvar-type i) (specifier-type 'sb-vm:signed-word)))
                       (give-up-ir1-transform))
                      (t
                       ;; Give the range-transform optimizers a chance to trigger.
                       (delay-ir1-transform node :ir1-phases)
                       `(if (fixnump i)
                            (let ((i (truly-the fixnum i)))
                              (,',name ,',x ,',y))
                            ,,non-fixnum))))))

  (def < i f (integer #.most-negative-fixnum) fixnum)
  (def > f i fixnum (integer #.most-negative-fixnum))

  (def > i f (integer * #.most-positive-fixnum) fixnum)
  (def < f i fixnum (integer * #.most-positive-fixnum))

  (def > i f (integer #.most-negative-fixnum) fixnum t)
  (def < f i fixnum (integer #.most-negative-fixnum) t)

  (def < i f (integer * #.most-positive-fixnum) fixnum t)
  (def > f i fixnum (integer * #.most-positive-fixnum) t))

(deftransform < ((x y) (integer (eql #.(1+ most-positive-fixnum))) * :important nil)
  `(not (> x most-positive-fixnum)))

(deftransform > ((x y) (integer (eql #.(1- most-negative-fixnum))) * :important nil)
  `(not (< x most-negative-fixnum)))

(deftransform = ((x y) (rational (constant-arg float)))
  "open-code RATIONAL to FLOAT comparison"
  (let ((y (lvar-value y)))
    (when (float-infinity-or-nan-p y)
      (give-up-ir1-transform))
    (setf y (rational y))
    (if (and (csubtypep (lvar-type x)
                        (specifier-type 'integer))
             (sb-xc:typep y 'ratio))
        nil
        `(= x ,y))))

(deftransform = ((x y) (t (constant-arg integer)))
  (let ((y (lvar-value y)))
    (if (and (if (cast-p (lvar-uses x))
                 ;; Only when X is already a number.
                 (csubtypep (lvar-type (cast-value (lvar-uses x)))
                            (specifier-type 'number))
                 t)
             (handler-case (not (sb-xc:= y (coerce y 'double-float)))
               (floating-point-overflow ()
                 t))
             (handler-case (not (sb-xc:= y (coerce y 'single-float)))
               (floating-point-overflow ()
                 t)))
        `(eql x y)
        (give-up-ir1-transform))))

(deftransform = ((x y) (integer (constant-arg ratio)))
  "constant-fold INTEGER to RATIO comparison"
  nil)

;;;; converting N-arg arithmetic functions
;;;;
;;;; N-arg arithmetic and logic functions are associated into two-arg
;;;; versions, and degenerate cases are flushed.

;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
(declaim (ftype (sfunction (symbol t list) list) associate-args))
(defun associate-args (fun first-arg more-args)
  (aver more-args)
  (let ((next (rest more-args))
        (arg (first more-args)))
    (if (null next)
        `(,fun ,first-arg ,arg)
        (associate-args fun `(,fun ,first-arg ,arg) next))))

;;; Reduce constants in ARGS list.
(declaim (ftype (sfunction (symbol list symbol) list) reduce-constants))
(defun reduce-constants (fun args one-arg-result-type)
  (let ((one-arg-constant-p (ecase one-arg-result-type
                              (number #'numberp)
                              (integer #'integerp)))
        (reduced-value)
        (reduced-p nil))
    (collect ((not-constants))
      (dolist (arg args)
        (let ((value (if (constantp arg)
                         (constant-form-value arg)
                         arg)))
          (cond ((not (funcall one-arg-constant-p value))
                 (not-constants arg))
                 (reduced-value
                  (handler-case (funcall fun reduced-value value)
                    (arithmetic-error ()
                      (not-constants arg))
                    (:no-error (value)
                      (cond ((bad-float-p value)
                             (not-constants arg))
                            (t
                             (setf reduced-value value
                                   reduced-p t))))))
                (t
                 (setf reduced-value value)))))
      ;; It is tempting to drop constants reduced to identity here,
      ;; but if X is SNaN in (* X 1), we cannot drop the 1.
      (if (not-constants)
          (if reduced-p
              `(,reduced-value ,@(not-constants))
              args)
          `(,reduced-value)))))

;;; Do source transformations for transitive functions such as +.
;;; One-arg cases are replaced with the arg and zero arg cases with
;;; the identity. ONE-ARG-RESULT-TYPE is the type to ensure (with THE)
;;; that the argument in one-argument calls is.
(declaim (ftype (function (symbol list t &optional symbol list)
                          * ; KLUDGE: avoid "assertion too complex to check"
                          #|(values t &optional (member nil t))|#)
                source-transform-transitive))
(defun source-transform-transitive (fun args identity
                                    &optional (one-arg-result-type 'number)
                                              (one-arg-prefixes '(values)))
  (case (length args)
    (0 identity)
    (1 `(,@one-arg-prefixes (the ,one-arg-result-type ,(first args))))
    (2 (values nil t))
    (t
     (let* ((reduced-args (reduce-constants fun args one-arg-result-type))
            (first (first reduced-args))
            (rest (rest reduced-args)))
       (if rest
           (associate-args fun first rest)
           first)))))

(define-source-transform + (&rest args)
  (source-transform-transitive '+ args 0))
(define-source-transform * (&rest args)
  (source-transform-transitive '* args 1))
(define-source-transform logior (&rest args)
  (source-transform-transitive 'logior args 0 'integer))
(define-source-transform logxor (&rest args)
  (source-transform-transitive 'logxor args 0 'integer))
(define-source-transform logand (&rest args)
  (source-transform-transitive 'logand args -1 'integer))
#-(or arm arm64 mips x86 x86-64 riscv) ; defined in compiler/{arch}/arith.lisp
(define-source-transform logeqv (&rest args)
  (source-transform-transitive 'logeqv args -1 'integer))
(define-source-transform gcd (&rest args)
  (source-transform-transitive 'gcd args 0 'integer '(abs)))
(define-source-transform lcm (&rest args)
  (source-transform-transitive 'lcm args 1 'integer '(abs)))
(deftransform logandc1 ((x y))
  `(logandc2 y x))

(deftransform gcd ((x y) ((and fixnum (not (eql 0)))
                          (and fixnum (not (eql 0)))))
  `(sb-kernel::fixnum-gcd x y))

(deftransforms (gcd sb-kernel::fixnum-gcd) ((x y))
  (cond ((or (same-leaf-ref-p x y)
             (lvar-value-is y 0))
         '(abs x))
        ((lvar-value-is x 0)
         '(abs y))
        (t
         (give-up-ir1-transform))))

(deftransform lcm ((x y))
  (cond ((or (same-leaf-ref-p x y)
             (csubtypep (lvar-type y) (specifier-type '(or (eql -1) (eql 1)))))
         '(abs x))
        ((csubtypep (lvar-type x) (specifier-type '(or (eql -1) (eql 1))))
         '(abs y))
        ((or (lvar-value-is x 0)
             (lvar-value-is y 0))
         0)
        (t
         (give-up-ir1-transform))))

(defun derive-gcd (args)
  (let ((min)
        (max)
        (includes-zero t)
        unbounded
        primes)
    (loop for arg in args
          for type = (lvar-type arg)
          do (multiple-value-bind (low high) (integer-type-numeric-bounds type)
               (let ((zero (types-equal-or-intersect type (specifier-type '(eql 0)))))
                 (unless zero
                   (setf includes-zero nil))
                 (cond ((not (and low high))
                        (setf unbounded t))
                       ((and (= (abs low) 1)
                             (= (abs high) 1)
                             (not zero))
                        (return-from derive-gcd (specifier-type '(eql 1))))
                       #-sb-xc-host
                       ((and (= low high)
                             (typep (abs low)
                                    `(integer 0
                                              ,(min (expt 2 32)
                                                    most-positive-fixnum)))
                             ;; Get some extra points
                             (positive-primep (abs low)))
                        (pushnew (abs low) primes))))
               (cond (unbounded)
                     (min
                      (setf min (min min low)
                            max (max max high)))
                     (t
                      (setf min low
                            max high)))))
    (specifier-type (cond ((not primes)
                           `(integer ,(if includes-zero
                                          0
                                          1)
                                     ,(if unbounded
                                          '*
                                          (max (abs min)
                                               (abs max)))))
                          ((cdr primes)
                           '(eql 1))
                          (t
                           `(or (eql 1) (eql ,(car primes))))))))

(defoptimizer (gcd derive-type) ((&rest args))
  (derive-gcd args))
(defoptimizer (sb-kernel::fixnum-gcd derive-type) ((&rest args))
  (derive-gcd args))

(defoptimizer (lcm derive-type) ((&rest args))
  (let (min
        maxes)
    (loop for arg in args
          for type = (lvar-type arg)
          do (multiple-value-bind (low high) (integer-type-numeric-bounds type)
               (unless (and low high)
                 (return-from lcm-derive-type-optimizer))
               (let* ((crosses-zero (<= low 0 high))
                      (abs-low (abs low))
                      (abs-high (abs high))
                      (low (if crosses-zero
                               0
                               (min abs-high abs-low)))
                      (high (max abs-low abs-high)))
                 (if min
                     (setf min (min min low))
                     (setf min low))
                 (push high maxes))))
    (specifier-type `(integer ,min ,(reduce #'* maxes)))))

;;; Do source transformations for intransitive n-arg functions such as
;;; /. With one arg, we form the inverse. With two args we pass.
;;; Otherwise we associate into two-arg calls.
(declaim (ftype (function (symbol symbol list list &optional symbol)
                          * ; KLUDGE: avoid "assertion too complex to check"
                          #|(values list &optional (member nil t))|#)
                source-transform-intransitive))
(defun source-transform-intransitive (fun fun* args one-arg-prefixes
                                      &optional (one-arg-result-type 'number))
  (case (length args)
    ((0 2) (values nil t))
    (1 `(,@one-arg-prefixes (the ,one-arg-result-type ,(first args))))
    (t
     (let ((reduced-args
             (reduce-constants fun* (rest args) one-arg-result-type)))
       (associate-args fun (first args) reduced-args)))))

(define-source-transform - (&rest args)
  (source-transform-intransitive '- '+ args '(%negate)))
(define-source-transform / (&rest args)
  (source-transform-intransitive '/ '* args '(/ 1)))

;;;; a hack to clean up divisions

(defun count-low-order-zeros (thing)
  (typecase thing
    (lvar
     (if (constant-lvar-p thing)
         (count-low-order-zeros (lvar-value thing))
         (count-low-order-zeros (lvar-uses thing))))
    (combination
     (case (let ((name (lvar-fun-name (combination-fun thing))))
             (or (modular-version-info name :untagged nil) name))
       ((+ -)
        (let ((min most-positive-fixnum)
              (itype (specifier-type 'integer)))
          (dolist (arg (combination-args thing) min)
            (if (csubtypep (lvar-type arg) itype)
                (setf min (min min (count-low-order-zeros arg)))
                (return 0)))))
       (*
        (let ((result 0)
              (itype (specifier-type 'integer)))
          (dolist (arg (combination-args thing) result)
            (if (csubtypep (lvar-type arg) itype)
                (setf result (+ result (count-low-order-zeros arg)))
                (return 0)))))
       (ash
        (let ((args (combination-args thing)))
          (if (= (length args) 2)
              (let ((amount (second args)))
                (if (constant-lvar-p amount)
                    (max (+ (count-low-order-zeros (first args))
                            (lvar-value amount))
                         0)
                    0))
              0)))
       (t
        0)))
    (integer
     (if (zerop thing)
         most-positive-fixnum
         (do ((result 0 (1+ result))
              (num thing (ash num -1)))
             ((logbitp 0 num) result))))
    (cast
     (count-low-order-zeros (cast-value thing)))
    (t
     0)))

(deftransform / ((numerator denominator) (integer integer))
  "convert x/2^k to shift"
  (unless (constant-lvar-p denominator)
    (give-up-ir1-transform))
  (let* ((denominator (lvar-value denominator))
         (bits (1- (integer-length denominator))))
    (unless (and (> denominator 0) (= (ash 1 bits) denominator))
      (give-up-ir1-transform))
    (let ((alignment (count-low-order-zeros numerator)))
      (unless (>= alignment bits)
        (give-up-ir1-transform))
      `(ash numerator ,(- bits)))))

(deftransforms (rational rationalize) ((x) (rational))
  'x)

(defoptimizer (rational derive-type) ((x))
  (one-arg-derive-type x (lambda (type)
                           (labels ((%%rational (x)
                                      (unless (and (floatp x)
                                                   (float-infinity-or-nan-p x))
                                        (rational x)))
                                    (%rational (bound)
                                      (typecase bound
                                        (cons (list (%%rational (car bound))))
                                        (null nil)
                                        (t (%%rational bound)))))
                             (make-numeric-type
                              :class 'rational
                              :low (%rational (numeric-type-low type))
                              :high (%rational (numeric-type-high type)))))
                       #'rational))

(defoptimizer (rationalize derive-type) ((x))
  (one-arg-derive-type x (lambda (type)
                           (labels ((%%rationalize (x)
                                      (unless (and (floatp x)
                                                   (float-infinity-or-nan-p x))
                                        (rationalize x)))
                                    (%rationalize (bound)
                                      (typecase bound
                                        (cons (list (%%rationalize (car bound))))
                                        (null nil)
                                        (t (%%rationalize bound)))))
                             (make-numeric-type
                              :class 'rational
                              :low (%rationalize (numeric-type-low type))
                              :high (%rationalize (numeric-type-high type)))))
                       #'rationalize))


;;;; transforming APPLY

;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
;;; only needs to understand one kind of variable-argument call. It is
;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
(define-source-transform apply (fun arg &rest more-args)
  (let ((args (cons arg more-args)))
    `(multiple-value-call ,fun
       ,@(mapcar (lambda (x) `(values ,x)) (butlast args))
       (values-list ,(car (last args))))))

;;;; transforming references to &REST argument

;;; We add magical &MORE arguments to all functions with &REST. If ARG names
;;; the &REST argument, this returns the lambda-vars for the context and
;;; count.
(defun possible-rest-arg-context (arg)
  (when (symbolp arg)
    (let* ((var (lexenv-find arg vars))
           (info (when (lambda-var-p var)
                   (lambda-var-arg-info var))))
      (when (and info
                 (eq :rest (arg-info-kind info))
                 (consp (arg-info-default info)))
        (values-list (arg-info-default info))))))

(defun mark-more-context-used (rest-var)
  (let ((info (lambda-var-arg-info rest-var)))
    (aver (eq :rest (arg-info-kind info)))
    (destructuring-bind (context count &optional used) (arg-info-default info)
      (unless used
        (setf (arg-info-default info) (list context count t))))))

(defun mark-more-context-invalid (rest-var)
  (let ((info (lambda-var-arg-info rest-var)))
    (aver (eq :rest (arg-info-kind info)))
    (setf (arg-info-default info) t)))

;;; This determines if the REF to a &REST variable is headed towards
;;; parts unknown, or if we can really use the context.
(defun rest-var-more-context-ok (lvar)
  (let* ((use (lvar-use lvar))
         (var (when (ref-p use) (ref-leaf use)))
         (home (when (lambda-var-p var) (lambda-var-home var)))
         (info (when (lambda-var-p var) (lambda-var-arg-info var)))
         (restp (when info (eq :rest (arg-info-kind info)))))
    (flet ((ref-good-for-more-context-p (ref)
             (when (not (node-lvar ref)) ; ref that goes nowhere is ok
               (return-from ref-good-for-more-context-p t))
             (let ((dest (principal-lvar-end (node-lvar ref))))
               (and (combination-p dest)
                    ;; If the destination is to anything but these, we're going to
                    ;; actually need the rest list -- and since other operations
                    ;; might modify the list destructively, the using the context
                    ;; isn't good anywhere else either.
                    (lvar-fun-is (combination-fun dest)
                                 '(%rest-values %rest-ref %rest-length
                                   %rest-null %rest-true))
                    ;; If the home lambda is different and isn't DX, it might
                    ;; escape -- in which case using the more context isn't safe.
                    (let ((clambda (node-home-lambda dest)))
                      (or (eq home clambda)
                          (leaf-dynamic-extent clambda)))))))
      (let ((ok (and restp
                     (consp (arg-info-default info))
                     (not (lambda-var-specvar var))
                     (not (lambda-var-sets var))
                     (every #'ref-good-for-more-context-p (lambda-var-refs var)))))
        (if ok
            (mark-more-context-used var)
            (when restp
              (mark-more-context-invalid var)))
        ok))))

;;; VALUES-LIST -> %REST-VALUES
(define-source-transform values-list (list)
  (let ((skip 0))
    (when-vop-existsp (:named sb-vm::%more-arg-values-skip)
      (when (typep list '(cons (member cdr rest) (cons t null)))
        (setf skip 1)
        (setf list (second list))))
    (multiple-value-bind (context count )
        (possible-rest-arg-context list)
      (if context
          `(%rest-values ,list ,context ,skip ,count)
          (values nil t)))))

;;; NTH -> %REST-REF
(define-source-transform nth (n list)
  (multiple-value-bind (context count) (possible-rest-arg-context list)
    (if context
        `(%rest-ref ,n ,list ,context ,count)
        (values nil t))))
(define-source-transform fast-&rest-nth (n list)
  (multiple-value-bind (context count) (possible-rest-arg-context list)
    (if context
        `(%rest-ref ,n ,list ,context ,count t)
        (bug "no &REST context for FAST-REST-NTH"))))

(define-source-transform elt (seq n)
  (if (policy *lexenv* (= safety 3))
      (values nil t)
      (multiple-value-bind (context count) (possible-rest-arg-context seq)
        (if context
            `(%rest-ref ,n ,seq ,context ,count)
            (values nil t)))))

;;; CAxR -> %REST-REF
(defun source-transform-car (list nth)
  (multiple-value-bind (context count) (possible-rest-arg-context list)
    (if context
        `(%rest-ref ,nth ,list ,context ,count)
        (values nil t))))

(define-source-transform car (list)
  (source-transform-car list 0))

(define-source-transform cadr (list)
  (or (source-transform-car list 1)
      `(car (cdr ,list))))

(define-source-transform caddr (list)
  (or (source-transform-car list 2)
      `(car (cdr (cdr ,list)))))

(define-source-transform cadddr (list)
  (or (source-transform-car list 3)
      `(car (cdr (cdr (cdr ,list))))))

;;; LENGTH -> %REST-LENGTH
(defun source-transform-length (list)
  (multiple-value-bind (context count) (possible-rest-arg-context list)
    (if context
        `(%rest-length ,list ,context ,count)
        (values nil t))))
(define-source-transform length (list) (source-transform-length list))
(define-source-transform list-length (list) (source-transform-length list))

(defoptimizer (length derive-type) ((sequence))
  (when (csubtypep (lvar-type sequence) (specifier-type 'list))
    (specifier-type '(mod #.(truncate sb-vm::max-dynamic-space-size
                             (* sb-vm:cons-size sb-vm:n-word-bytes))))))

;;; ENDP, NULL and NOT -> %REST-NULL
;;;
;;; Outside &REST convert into an IF so that IF optimizations will eliminate
;;; redundant negations.
(defun source-transform-null (x op)
  (multiple-value-bind (context count) (possible-rest-arg-context x)
    (cond (context
           `(%rest-null ',op ,x ,context ,count))
          ((eq 'endp op)
           `(if (the list ,x) nil t))
          (t
           `(if ,x nil t)))))
(define-source-transform not (x) (source-transform-null x 'not))
(define-source-transform null (x) (source-transform-null x 'null))
(define-source-transform endp (x) (source-transform-null x 'endp))

(deftransform %rest-values ((list context skip count))
  (if (rest-var-more-context-ok list)
      `(%more-arg-values context skip count)
      `(values-list (nthcdr skip list))))

(deftransform %rest-ref ((n list context count &optional length-checked-p))
  (cond ((not (rest-var-more-context-ok list))
         `(nth n list))
        ((and length-checked-p
              (constant-lvar-p length-checked-p)
              (lvar-value length-checked-p))
         `(%more-arg context n))
        (t
         `(and (< (the index n) count) (%more-arg context n)))))

(deftransform %rest-length ((list context count))
  (if (rest-var-more-context-ok list)
      'count
      `(length list)))

(deftransform %rest-null ((op list context count))
  (aver (constant-lvar-p op))
  (if (rest-var-more-context-ok list)
      `(eql 0 count)
      `(,(lvar-value op) list)))

(deftransform %rest-true ((list context count))
  (if (rest-var-more-context-ok list)
      `(not (eql 0 count))
      `list))

;;;; transforming FORMAT
;;;;
;;;; If the control string is a compile-time constant, then replace it
;;;; with a use of the FORMATTER macro so that the control string is
;;;; ``compiled.'' Furthermore, if the destination is either a stream
;;;; or T and the control string is a function (i.e. FORMATTER), then
;;;; convert the call to FORMAT to just a FUNCALL of that function.

;;; for compile-time argument count checking.
;;;
;;; FIXME II: In some cases, type information could be correlated; for
;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
;;; of a corresponding argument is known and does not intersect the
;;; list type, a warning could be signalled.
(defglobal *optimize-format-strings* t)
(defun check-format-args (node fun arg-n verify-arg-count
                          &aux (combination-args (basic-combination-args node)))
  ;; ARG-N is the index into COMBINATION-ARGS of a format control string,
  ;; usually 0 or 1.
  (flet ((maybe-replace (control)
           (binding* ((string (lvar-value control))
                      ((symbols new-string)
                       (sb-format::extract-user-fun-directives string)))
             (when (or symbols (and new-string (string/= string new-string)))
               (change-ref-leaf
                (lvar-use control)
                (find-constant
                 (cond ((not symbols) new-string)
                       ((producing-fasl-file)
                        (acond ((assoc string (constant-cache *compilation*) :test 'equal)
                                (cdr it))
                               (t
                                (let ((proxy (sb-format::make-fmt-control-proxy
                                                         new-string symbols)))
                                  (maybe-emit-make-load-forms proxy)
                                  (push (cons string proxy) (constant-cache *compilation*))
                                  proxy))))
                       #-sb-xc-host ; no such object as a FMT-CONTROL
                       (t
                        (sb-format::make-fmt-control new-string symbols))))
                :recklessly t)))))
    (when (list-of-length-at-least-p combination-args (1+ arg-n))
      (let* ((args (nthcdr arg-n combination-args))
             (control (pop args)))
        (when (and (constant-lvar-p control) (stringp (lvar-value control)))
          (when verify-arg-count
            (binding* ((string (lvar-value control))
                       (*compiler-error-context* node)
                       ((min max)
                        (handler-case (sb-format:%compiler-walk-format-string
                                       string args)
                          (sb-format:format-error (c)
                            (compiler-warn "~A" c)))
                        :exit-if-null)
                       (nargs (length args)))
             (cond
              ((< nargs min)
               (warn 'format-too-few-args-warning
                     :format-control
                     "Too few arguments (~D) to ~S ~S: requires at least ~D."
                     :format-arguments (list nargs fun string min)))
              ((> nargs max)
               (warn 'format-too-many-args-warning
                     :format-control
                     "Too many arguments (~D) to ~S ~S: uses at most ~D."
                     :format-arguments (list nargs fun string max))))))
          ;; Now possibly replace the control string
          (when *optimize-format-strings*
            (maybe-replace control))
          (return-from check-format-args)))
      ;; Look for a :FORMAT-CONTROL and possibly replace that. Always do that
      ;; when cross-compiling, but in the target, cautiously skip this step
      ;; if the first argument is not known to be a symbol. Why?
      ;; Well if the first argument is a string (or function), then that object
      ;; is *arbitrary* format-control, and the arguments that follow it do not
      ;; necessarily comprise a keyword/value pair list as they would for
      ;; constructing a condition instance. Moreover, in that case you could
      ;; randomly have a symbol named :FORMAT-CONTROL as an argument, randomly
      ;; followed by a string that is not actually a format-control!
      ;; But when the first argument is a symbol, then the following arguments
      ;; must be a plist passed to MAKE-CONDITION. [See COERCE-TO-CONDITION]
      ;;
      ;; In this cross-compiler, this processing is not only always right, but
      ;; in fact mandatory, to make our format strings agnostic of package names.
      (when (and *optimize-format-strings*
                 (member fun '(error warn style-warn
                               compiler-warn compiler-style-warn))
                 ;; Hmm, should we additionally require that this symbol be
                 ;; known to designate a subtype of SIMPLE-CONDITION? Perhaps.
                 #-sb-xc-host
                 (csubtypep (lvar-type (car combination-args))
                            (specifier-type 'symbol)))
        (let ((keywords (cdr combination-args)))
          (loop
            (unless (and keywords (constant-lvar-p (car keywords))) (return))
            (when (eq (lvar-value (car keywords)) :format-control)
              (let ((control (cadr keywords)))
                (when (and (constant-lvar-p control) (stringp (lvar-value control)))
                  (maybe-replace control)))
              (return))
            (setq keywords (cddr keywords))))))))

;;; FORMAT control string best-effort sanity checker and compactor
(dolist (fun (append '(format error warn style-warn %program-error)
                     #+sb-xc-host ; No need for these after self-build
                     '(bug compiler-mumble compiler-notify
                       compiler-style-warn compiler-warn compiler-error
                       maybe-compiler-notify
                       note-lossage note-unwinnage)))
  (setf (fun-info-optimizer (fun-info-or-lose fun))
        (let ((arg-n (if (eq fun 'format) 1 0))
              ;; in some Lisps, DOLIST uses SETQ instead of LET on the iteration
              ;; variable, so the closures would all share one binding of FUN,
              ;; which is not as intended. An extra LET solves that.
              (fun fun))
          (lambda (node) (check-format-args node fun arg-n t)))))

;; Can these appear in the expansion of FORMATTER?
#+sb-xc-host
(dolist (fun '(sb-format:format-error
               sb-format::format-error-at
               sb-format::format-error-at*))
  (setf (fun-info-optimizer (fun-info-or-lose fun))
        (let ((arg-n (if (eq fun 'sb-format:format-error) 0 2))
              (fun fun))
          (lambda (node) (check-format-args node fun arg-n nil)))))

(defoptimizer (format derive-type) ((dest control &rest args))
  (when (lvar-value-is dest nil)
    (specifier-type 'simple-string)))

;;; We disable this transform in the cross-compiler to save memory in
;;; the target image; most of the uses of FORMAT in the compiler are for
;;; error messages, and those don't need to be particularly fast.
#+sb-xc
(deftransform format ((dest control &rest args) (t simple-string &rest t) *
                      :policy (>= speed space))
  (unless (constant-lvar-p control)
    (give-up-ir1-transform "The control string is not a constant."))
  (let* ((argc (length args))
         (arg-names (make-gensym-list argc))
         (control (lvar-value control))
         ;; Expanding the control string now avoids deferring to FORMATTER
         ;; so that we don't need an internal-only variant of it that
         ;; passes through extra args to %FORMATTER.
         ;; FIXME: instead of checking the condition report, define a
         ;; dedicated condition class
         (expr (handler-case ; in case %formatter wants to signal an error
                   (sb-format::%formatter control argc nil)
                 ;; otherwise, let the macro complain
                 (sb-format:format-error (c)
                   (if (string= (sb-format::format-error-complaint c)
                                "No package named ~S")
                       ;; "~/apackage:afun/" might become legal later.
                       ;; To put it in perspective, "~/f" (no closing slash)
                       ;; *will* be a runtime error, but this only *might* be
                       ;; a runtime error, so we can't signal a full warning.
                       ;; At absolute worst it should be a style-warning.
                       (give-up-ir1-transform "~~// directive mentions unknown package")
                      `(formatter ,control))))))
    `(lambda (dest control ,@arg-names)
       (declare (ignore control))
       (format dest ,expr ,@arg-names))))

(deftransform format ((stream control &rest args) (stream function &rest t))
  (let ((arg-names (make-gensym-list (length args))))
    `(lambda (stream control ,@arg-names)
       (funcall control stream ,@arg-names)
       nil)))

(deftransform format ((tee control &rest args) ((member t) function &rest t))
  (let ((arg-names (make-gensym-list (length args))))
    `(lambda (tee control ,@arg-names)
       (declare (ignore tee))
       (funcall control *standard-output* ,@arg-names)
       nil)))

(deftransform format ((stream control &rest args) (null function &rest t))
  (let ((arg-names (make-gensym-list (length args))))
    `(lambda (stream control ,@arg-names)
       (declare (ignore stream))
       (%with-output-to-string (stream)
         (funcall control stream ,@arg-names)))))

(defun concatenate-format-p (control args)
  (and
   (loop for directive in control
         always
         (or (stringp directive)
             (and (sb-format::format-directive-p directive)
                  (and (eql (sb-format::directive-bits directive) (char-code #\A))
                       (null (sb-format::directive-params directive))
                       (pop args)))))
   (null args)))

(deftransform format ((stream control &rest args) (null (constant-arg string) &rest t))
  (let ((tokenized
          (handler-case
              (sb-format::tokenize-control-string (coerce (lvar-value control) 'simple-string))
            (sb-format:format-error ()
              (give-up-ir1-transform)))))
    (unless (concatenate-format-p tokenized args)
      (give-up-ir1-transform))
    (let* ((arg-names (make-gensym-list (length args)))
           (stringsp t)
           (args (let ((arg-names arg-names))
                   (mapcar (lambda (directive)
                             (if (stringp directive)
                                 directive
                                 (let ((arg (pop args))
                                       (arg-name (pop arg-names)))
                                   (unless (csubtypep (lvar-type arg) (specifier-type 'string))
                                     (setf stringsp nil))
                                   (if (constant-lvar-p arg)
                                       `',(lvar-value arg)
                                       arg-name))))
                           tokenized))))
      (if (= (length args) 1)
          `(lambda (stream control ,@arg-names)
             (declare (ignore stream control)
                      (ignorable ,@arg-names))
             (princ-to-string ,@args))
          `(lambda (stream control ,@arg-names)
             (declare (ignore stream control)
                      (ignorable ,@arg-names))
             (,@(if stringsp
                    `(concatenate 'string)
                    `(sb-format::princ-multiple-to-string))
              ,@args))))))

(deftransform sb-format::princ-multiple-to-string ((&rest args) (&rest string) * :important nil)
  (let ((arg-names (make-gensym-list (length args))))
    `(lambda ,arg-names
       (concatenate 'string ,@arg-names))))

(deftransform sb-format::format-integer ((object base stream) * * :node node)
  (delay-ir1-transform node :ir1-phases)
  `(let ((*print-base* base)
         (*print-radix* nil))
     (princ object stream)))

(deftransform sb-format::format-integer ((object base stream) (integer t t))
  `(sb-impl::%output-integer-in-base object base stream))

(deftransform pathname ((pathspec) (pathname) *)
  'pathspec)

(deftransform pathname ((pathspec) (string) *)
  '(values (parse-namestring pathspec)))

(defoptimizer (cerror optimizer) ((report control &rest args))
  (when (and (constant-lvar-p control)
             (constant-lvar-p report))
    (let ((x (lvar-value control))
          (y (lvar-value report)))
      (when (and (stringp x) (stringp y))
        (multiple-value-bind (min1 max1)
            (handler-case
                (sb-format:%compiler-walk-format-string x args)
              (sb-format:format-error (c)
                (compiler-warn "~A" c)))
          (when min1
            (multiple-value-bind (min2 max2)
                (handler-case
                    (sb-format:%compiler-walk-format-string y args)
                  (sb-format:format-error (c)
                    (compiler-warn "~A" c)))
              (when min2
                (let ((nargs (length args)))
                  (cond
                    ((< nargs (min min1 min2))
                     (warn 'format-too-few-args-warning
                           :format-control
                           "Too few arguments (~D) to ~S ~S ~S: ~
                            requires at least ~D."
                           :format-arguments
                           (list nargs 'cerror y x (min min1 min2))))
                    ((> nargs (max max1 max2))
                     (warn 'format-too-many-args-warning
                           :format-control
                           "Too many arguments (~D) to ~S ~S ~S: ~
                            uses at most ~D."
                           :format-arguments
                           (list nargs 'cerror y x (max max1 max2))))))))))))))

(deftransform error ((x &key datum expected-type format-control format-arguments))
  (if (and format-control format-arguments
           (let ((use (lvar-uses format-arguments)))
             (and (combination-p use)
                  (lvar-fun-is (combination-fun use) '(list)))))
      (cond ((and datum expected-type)
             `(apply #'%simple-type-error x datum expected-type format-control format-arguments))
            ((not (and datum expected-type))
             `(apply #'%simple-error x format-control format-arguments))
            (t
             (give-up-ir1-transform)))
      (give-up-ir1-transform)))

(defun constant-cons-type (type)
  (multiple-value-bind (singleton value)
      (type-singleton-p type)
    (if singleton
        (values value t)
        (typecase type
          (cons-type
           (multiple-value-bind (car car-good)
               (constant-cons-type (cons-type-car-type type))
             (multiple-value-bind (cdr cdr-good)
                 (constant-cons-type (cons-type-cdr-type type))
               (and car-good cdr-good
                    (values (cons car cdr) t)))))))))

(defoptimizer (coerce derive-type) ((value type))
  (multiple-value-bind (type constant)
      (if (constant-lvar-p type)
          (values (lvar-value type) t)
          (constant-cons-type (lvar-type type)))
    (when constant
      ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
      ;; but dealing with the niggle that complex canonicalization gets
      ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
      ;; type COMPLEX.
      (let ((result-typeoid (careful-specifier-type type)))
        (cond
          ((null result-typeoid) nil)
          ((csubtypep result-typeoid (specifier-type 'number))
           ;; the difficult case: we have to cope with ANSI 12.1.5.3
           ;; Rule of Canonical Representation for Complex Rationals,
           ;; which is a truly nasty delivery to field.
           (cond
             ((csubtypep result-typeoid (specifier-type 'real))
              ;; cleverness required here: it would be nice to deduce
              ;; that something of type (INTEGER 2 3) coerced to type
              ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
              ;; FLOAT gets its own clause because it's implemented as
              ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
              ;; logic below.
              result-typeoid)
             ((and (numeric-type-p result-typeoid)
                   (eq (numeric-type-complexp result-typeoid) :real))
              ;; FIXME: is this clause (a) necessary or (b) useful?
              result-typeoid)
             ((or (csubtypep result-typeoid
                             (specifier-type '(complex single-float)))
                  (csubtypep result-typeoid
                             (specifier-type '(complex double-float)))
                  #+long-float
                  (csubtypep result-typeoid
                             (specifier-type '(complex long-float))))
              ;; float complex types are never canonicalized.
              result-typeoid)
             (t
              ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
              ;; probably just a COMPLEX or equivalent.  So, in that
              ;; case, we will return a complex or an object of the
              ;; provided type if it's rational:
              (type-union result-typeoid
                          (type-intersection (lvar-type value)
                                             (specifier-type 'rational))))))
          (t
           result-typeoid))))))

(defoptimizer (compile derive-type) ((nameoid function))
  (when (csubtypep (lvar-type nameoid)
                   (specifier-type 'null))
    (values-specifier-type '(values function boolean boolean))))

;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
;;; optimizer, above).
(defoptimizer (array-element-type derive-type) ((array))
  (let ((array-type (lvar-type array)))
    (labels ((consify (list)
              (if (endp list)
                  '(eql nil)
                  `(cons (eql ,(car list)) ,(consify (rest list)))))
            (get-element-type (a)
              (let ((element-type
                     (type-specifier (array-type-specialized-element-type a))))
                (cond ((eq element-type '*)
                       (specifier-type 'type-specifier))
                      ((symbolp element-type)
                       (make-eql-type element-type))
                      ((consp element-type)
                       (specifier-type (consify element-type)))
                      (t
                       (error "can't understand type ~S~%" element-type))))))
      (labels ((recurse (type)
                  (cond ((array-type-p type)
                         (get-element-type type))
                        ((union-type-p type)
                         (apply #'type-union
                                (mapcar #'recurse (union-type-types type))))
                        (t
                         *universal-type*))))
        (recurse array-type)))))

(deftransform array-element-type ((array))
  (let ((type (lvar-type array)))
    (flet ((element-type (type)
             (and (array-type-p type)
                  (neq (array-type-specialized-element-type type) *wild-type*)
                  (type-specifier (array-type-specialized-element-type type)))))
      (cond ((let ((type (element-type type)))
               (and type
                    `',type)))
            ((union-type-p type)
             (let (result)
               (loop for type in (union-type-types type)
                     for et = (element-type type)
                     unless (and et
                                 (if result
                                     (equal result et)
                                     (setf result et)))
                     do (give-up-ir1-transform))
               `',result))
            ((intersection-type-p type)
             (loop for type in (intersection-type-types type)
                   for et = (element-type type)
                   when et
                   return `',et
                   finally (give-up-ir1-transform)))
            (t
             (give-up-ir1-transform))))))

(define-source-transform sb-impl::sort-vector (vector start end predicate key)
  ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
  ;; isn't really related to the CMU CL code, since instead of trying
  ;; to generalize the CMU CL code to allow START and END values, this
  ;; code has been written from scratch following Chapter 7 of
  ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
  `(macrolet ((%index (x) `(truly-the index ,x))
              (%parent (i) `(ash ,i -1))
              (%left (i) `(%index (ash ,i 1)))
              (%right (i) `(%index (1+ (ash ,i 1))))
              (%elt (i)
                `(aref ,',vector
                       (%index (+ (%index ,i) start-1))))
              (%heapify (i)
                `(do* ((i ,i)
                       (left (%left i) (%left i)))
                      ((> left current-heap-size))
                   (declare (type index i left))
                   (let* ((i-elt (%elt i))
                          (i-key (funcall keyfun i-elt))
                          (left-elt (%elt left))
                          (left-key (funcall keyfun left-elt)))
                     (multiple-value-bind (large large-elt large-key)
                         (if (funcall ,',predicate i-key left-key)
                             (values left left-elt left-key)
                             (values i i-elt i-key))
                       (let ((right (%right i)))
                         (multiple-value-bind (largest largest-elt)
                             (if (> right current-heap-size)
                                 (values large large-elt)
                                 (let* ((right-elt (%elt right))
                                        (right-key (funcall keyfun right-elt)))
                                   (if (funcall ,',predicate large-key right-key)
                                       (values right right-elt)
                                       (values large large-elt))))
                           (cond ((= largest i)
                                  (return))
                                 (t
                                  (setf (%elt i) largest-elt
                                        (%elt largest) i-elt
                                        i largest)))))))))
              (%sort-vector (keyfun)
                `(let ( ;; Heaps prefer 1-based addressing.
                       (start-1 (1- ,',start))
                       (current-heap-size (- ,',end ,',start))
                       (keyfun ,keyfun))
                   (declare (type (integer -1 #.(1- most-positive-fixnum))
                                  start-1))
                   (declare (type index current-heap-size))
                   (declare (type function keyfun))
                   (loop for i of-type index
                         from (ash current-heap-size -1) downto 1 do
                         (%heapify i))
                   (loop
                    (when (< current-heap-size 2)
                      (return))
                    (rotatef (%elt 1) (%elt current-heap-size))
                    (decf current-heap-size)
                    (%heapify 1)))))
     (declare (optimize (insert-array-bounds-checks 0) speed))
     (if (typep ,vector 'simple-vector)
         ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
         ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
         (if (null ,key)
             ;; Special-casing the KEY=NIL case lets us avoid some
             ;; function calls.
             (%sort-vector #'identity)
             (%sort-vector ,key))
         ;; It's hard to anticipate many speed-critical applications for
         ;; sorting vector types other than (VECTOR T), so we just lump
         ;; them all together in one slow dynamically typed mess.
         (locally
             (declare (optimize (inhibit-warnings 3)))
           (%sort-vector (or ,key #'identity))))))

(deftransform sort ((list predicate &key key)
                    (list t &rest t) *)
  `(sb-impl::stable-sort-list list
                              (%coerce-callable-to-fun predicate)
                              (if key (%coerce-callable-to-fun key) #'identity)))

(deftransform sort ((vector predicate &key key)
                      (vector t &rest t) *
                      :policy (= space 0))
  (when (eq (array-type-upgraded-element-type (lvar-type vector)) *wild-type*)
    (give-up-ir1-transform))
  `(progn
     (with-array-data ((vector vector)
                       (start)
                       (end)
                       :check-fill-pointer t)
       (sb-impl::sort-vector vector
                             start end
                             (%coerce-callable-to-fun predicate)
                             (if key (%coerce-callable-to-fun key) #'identity)))
     vector))

(deftransform stable-sort ((sequence predicate &key key)
                           ((or vector list) t))
  (let ((sequence-type (lvar-type sequence)))
    (cond ((csubtypep sequence-type (specifier-type 'list))
           `(sb-impl::stable-sort-list sequence
                                       (%coerce-callable-to-fun predicate)
                                       (if key (%coerce-callable-to-fun key) #'identity)))
          ((csubtypep sequence-type (specifier-type 'simple-vector))
           `(sb-impl::stable-sort-simple-vector sequence
                                                (%coerce-callable-to-fun predicate)
                                                (and key (%coerce-callable-to-fun key))))
          (t
           `(sb-impl::stable-sort-vector sequence
                                         (%coerce-callable-to-fun predicate)
                                         (and key (%coerce-callable-to-fun key)))))))

;;;; transforms for SB-EXT:OCTETS-TO-STRING and SB-EXT:STRING-TO-OCTETS

#+sb-xc ; not needed to cross-compile
(progn
(deftransform string-to-octets ((string &key external-format (start 0) end null-terminate)
                                (t &rest t)
                                *
                                :node node)
  "precompute external-format lookup"
  (unless external-format
    (give-up-ir1-transform))
  (unless (constant-lvar-p external-format)
    (give-up-ir1-transform))
  (let ((xf-designator (lvar-value external-format)))
    (when (eql xf-designator :default)
      (give-up-ir1-transform))
    (let ((xf (get-external-format xf-designator)))
      (unless xf
        (give-up-ir1-transform))
      (let ((form `(let ((fun (load-time-value
                               (sb-impl::ef-string-to-octets-fun
                                (get-external-format ',xf-designator))
                               t))
                         (replacement
                          (load-time-value
                           (sb-impl::ef-replacement
                            (get-external-format ',xf-designator)))))
                     (sb-impl::%string-to-octets fun string start end
                                                 (if null-terminate 1 0) replacement))))
        (if (or (csubtypep (lvar-type string) (specifier-type 'simple-string))
                (policy node (> speed space)))
            `(locally (declare (inline sb-impl::%string-to-octets))
               ,form)
            form)))))
(deftransform octets-to-string ((vector &key external-format (start 0) end)
                                (t &rest t)
                                *
                                :node node)
  "precompute external-format lookup"
  (unless external-format
    (give-up-ir1-transform))
  (unless (constant-lvar-p external-format)
    (give-up-ir1-transform))
  (let ((xf-designator (lvar-value external-format)))
    (when (eql xf-designator :default)
      (give-up-ir1-transform))
    (let ((xf (get-external-format xf-designator)))
      (unless xf
        (give-up-ir1-transform))
      (let ((form `(let ((fun (load-time-value
                               (sb-impl::ef-octets-to-string-fun
                                (get-external-format ',xf-designator))
                               t))
                         (replacement
                          (load-time-value
                           (sb-impl::ef-replacement
                            (get-external-format ',xf-designator)))))
                     (sb-impl::%octets-to-string fun vector start end replacement))))
        (if (or (csubtypep (lvar-type vector) (specifier-type '(simple-array (unsigned-byte 8) (*))))
                (policy node (> speed space)))
            `(locally (declare (inline sb-impl::%octets-to-string))
               ,form)
            form)))))
) ; PROGN

;;;; debuggers' little helpers

;;; for debugging when transforms are behaving mysteriously,
;;; e.g. when debugging a problem with an ASH transform
;;;   (defun foo (&optional s)
;;;     (sb-c::/report-lvar s "S outside WHEN")
;;;     (when (and (integerp s) (> s 3))
;;;       (sb-c::/report-lvar s "S inside WHEN")
;;;       (let ((bound (ash 1 (1- s))))
;;;         (sb-c::/report-lvar bound "BOUND")
;;;         (let ((x (- bound))
;;;               (y (1- bound)))
;;;           (sb-c::/report-lvar x "X")
;;;           (sb-c::/report-lvar x "Y"))
;;;         `(integer ,(- bound) ,(1- bound)))))
;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
;;; and the function doesn't do anything at all.)
#+sb-show
(progn
  (defknown /report-lvar (t t) null)
  (deftransform /report-lvar ((x message) (t t))
    (format t "~%/in /REPORT-LVAR~%")
    (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x))
    (when (constant-lvar-p x)
      (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x)))
    (format t "/MESSAGE=~S~%" (lvar-value message))
    (give-up-ir1-transform "not a real transform"))
  (defun /report-lvar (x message)
    (declare (ignore x message))))

;;; Can fold only when time-zone is supplied.
(defoptimizer (encode-universal-time optimizer)
    ((second minute hour date month year time-zone) node)
  (when (every #'constant-lvar-p (basic-combination-args node))
    (constant-fold-call node)
    t))

#-(and win32 (not sb-thread))
(deftransform sleep ((seconds) ((integer 0 #.(expt 10 8))))
  `(if sb-impl::*deadline*
       (locally (declare (notinline sleep)) (sleep seconds))
       (sb-unix:nanosleep seconds 0)))

#-(and win32 (not sb-thread))
(deftransform sleep ((seconds)
                     ((constant-arg (or rational (not (satisfies float-infinity-p))))))
  (let ((seconds-value (lvar-value seconds)))
    (multiple-value-bind (seconds nano)
        (sb-impl::split-seconds-for-sleep seconds-value)
      (if (> seconds (expt 10 8))
          (give-up-ir1-transform)
          `(if sb-impl::*deadline*
               (locally (declare (notinline sleep)) (sleep seconds))
               (sb-unix:nanosleep ,seconds ,nano))))))

;;; Define SYMBOL-TLS-INDEX to return the byte offset of this symbol's
;;; value cell in the lisp tls area.
#+sb-thread
(define-source-transform symbol-tls-index (sym)
  #+64-bit `(ash (get-header-data ,sym) -24)
  #-64-bit `(truly-the (and fixnum unsigned-byte)
             (ash (sb-vm::%symbol-tls-index ,sym) sb-vm:n-fixnum-tag-bits)))


(deftransform make-string-output-stream ((&key element-type))
  (case (cond ((not element-type) #+sb-unicode 'character #-sb-unicode 'base-char)
              ((not (constant-lvar-p element-type)) nil)
              (t (let ((requested-type
                        (ir1-transform-specifier-type (lvar-value element-type))))
                   (cond ((eq requested-type *empty-type*) nil) ; what a loser
                         ((csubtypep requested-type (specifier-type 'base-char))
                          'base-char)
                         ((csubtypep requested-type (specifier-type 'character))
                          'character)))))
    (character `(sb-impl::%make-character-string-ostream))
    (base-char `(sb-impl::%make-base-string-ostream))
    (t (give-up-ir1-transform))))

(flet ((xform (symbol match-kind)
         (when (constant-lvar-p symbol)
           (let* ((symbol (lvar-value symbol))
                  (kind (info :variable :kind symbol))
                  (state (deprecated-thing-p 'variable symbol)))
             (when state
               (check-deprecated-thing 'variable symbol)
               (case state
                 ((:early :late)
                  (unless (gethash symbol (free-vars *ir1-namespace*))
                    (setf (gethash symbol (free-vars *ir1-namespace*)) :deprecated)))))
             ;; :global in the test below is redundant if match-kind is :global
             ;; but it's harmless and a convenient way to express this.
             ;; Note that some 3rd-party libraries use variations on DEFCONSTANT
             ;; expanding into expressions such as:
             ;;  (CL:DEFCONSTANT S (IF (BOUNDP 'S) (SYMBOL-VALUE 'S) (COMPUTE)))
             ;; which means we have to use care if S in for-evaluation position would
             ;; be converted to (LOAD-TIME-VALUE (SYMBOL-VALUE 'S)).
             ;; When S's value is directly dumpable, it works fine, but otherwise
             ;; it's dangerous. If the user wishes to avoid eager evaluation entirely,
             ;; a local notinline declaration on SYMBOL-VALUE will do.
             (when (or (eq kind match-kind)
                       (eq kind :global)
                       (and (eq kind :constant)
                            (boundp symbol)
                            (typep (symbol-value symbol) '(or character symbol
                                                           fixnum #+64-bit single-float))))
               symbol)))))
  (deftransform symbol-global-value ((symbol))
    (or (xform symbol :global)
        (give-up-ir1-transform)))
  (deftransform symbol-value ((symbol))
    (or (xform symbol :special)
        (give-up-ir1-transform))))

(deftransform symbol-value ((symbol) ((constant-arg symbol)))
  (let* ((symbol (lvar-value symbol))
         (kind (info :variable :kind symbol)))
    (if (and (eq kind :constant)
             (boundp symbol)
             (typep (symbol-value symbol) '(or character symbol
                                            fixnum #+64-bit single-float)))
        symbol
        (give-up-ir1-transform))))

(deftransform boundp ((symbol) ((constant-arg symbol)) * :policy (< safety 3))
  (if (always-boundp (lvar-value symbol))
      t
      (give-up-ir1-transform)))

(flet ((xform (symbol match-kind)
         (let* ((symbol (lvar-value symbol))
                (kind (info :variable :kind symbol)))
           (if (or (eq kind match-kind) (memq kind '(:constant :global))) ; as above
               `(setq ,symbol value)
               (give-up-ir1-transform)))))
  (deftransform set-symbol-global-value ((symbol value) ((constant-arg symbol) t))
    (xform symbol :global))
  (deftransform set ((symbol value) ((constant-arg symbol) t))
    (xform symbol :special)))

(deftransform symbol-package ((s) (symbol) *)
  (if (cast-p (lvar-uses s))
      ;; Avoid inlining a type check because %symbol-package is not
      ;; cast-externally-checkable-p
      (give-up-ir1-transform)
      `(%symbol-package s)))

(deftransforms (prin1-to-string princ-to-string) ((object) (number) * :important nil)
  `(stringify-object object))

(deftransform princ ((object &optional stream) (string &optional t) * :important nil)
  `(write-string object stream))

#+sb-thread
(progn
  (defoptimizer (sb-thread::call-with-mutex derive-type) ((function mutex))
    (let ((type (lvar-fun-type function t t)))
      (when (fun-type-p type)
        (fun-type-returns type))))

  (defoptimizer (sb-thread::call-with-mutex-timed derive-type) ((function mutex waitp timeout))
    (let ((type (lvar-fun-type function t t)))
      (when (fun-type-p type)
        (let ((null-p (not (and (constant-lvar-p waitp)
                                (lvar-value waitp)
                                (lvar-value-is timeout nil)))))
          (if null-p
              (values-type-union (fun-type-returns type)
                                 (values-specifier-type '(values null &optional)))
              (fun-type-returns type))))))

  (macrolet ((copy (to from)
               `(setf (fun-info-derive-type (fun-info-or-lose ',to))
                      (fun-info-derive-type (fun-info-or-lose ',from)))))
    (copy sb-thread::call-with-recursive-lock-timed sb-thread::call-with-mutex-timed)
    (copy sb-thread::call-with-recursive-lock sb-thread::call-with-mutex)
    (copy sb-thread::fast-call-with-mutex sb-thread::call-with-mutex)
    (copy sb-thread::fast-call-with-recursive-lock sb-thread::call-with-recursive-lock))

  (defoptimizer (sb-thread::call-with-system-mutex derive-type) ((function mutex))
    (let ((type (lvar-fun-type function t t)))
      (when (fun-type-p type)
        (fun-type-returns type))))

  (setf (fun-info-derive-type (fun-info-or-lose 'sb-thread::call-with-system-mutex/allow-with-interrupts))
        (setf (fun-info-derive-type (fun-info-or-lose 'sb-thread::call-with-system-mutex/without-gcing))
              (fun-info-derive-type (fun-info-or-lose 'sb-thread::call-with-system-mutex)))))

(defoptimizer (sb-impl::%with-standard-io-syntax derive-type) ((function))
  (let ((type (lvar-fun-type function t t)))
    (when (fun-type-p type)
      (fun-type-returns type))))

(defoptimizer (call-with-timing derive-type) ((timer function &rest arguments))
  (let ((type (lvar-fun-type function t t)))
    (when (fun-type-p type)
      (fun-type-returns type))))

(deftransform pointerp ((object))
  (let ((type (lvar-type object)))
    (cond ((csubtypep type (specifier-type '(or fixnum character #+64-bit single-float)))
           'nil)
          ((csubtypep type (specifier-type '(or symbol list instance function)))
           't)
          (t
           (give-up-ir1-transform)))))

;;; Add transforms in reverse of the order you want them tried
;;; (because of stupid semantics)
(deftransform fboundp ((symbol) (symbol))
  #+linkage-space `(sb-kernel:fdefn-fun symbol)
  #-linkage-space
  `(let ((fdefn (sb-vm::%symbol-fdefn symbol)))
     (and (not (eq fdefn 0))
          ;; On 32-bit, where %SYMBOL-FDEFN of NIL returns NIL instead of 0,
          ;; this is valid code! Watch closely:
          ;; FDEFN-FUN is "MOV EDX, [EDX+1]"
          ;; But [NIL+1] is the same as CDR of NIL, which is NIL.
          (fdefn-fun (truly-the fdefn fdefn)))))
;;; Normally we don't create fdefns by side-effect of calling FBOUNDP,
;;; but this transform is neutral in terms of the sum of code and data size.
;;; So for the cost of an FDEFN that might never store a function, the code
;;; is smaller by about the size of an fdefn; and it's faster, so do it.
#-linkage-space
(deftransform fboundp ((name) ((constant-arg symbol)))
  `(fdefn-fun (load-time-value (find-or-create-fdefn ',(lvar-value name)) t)))

;;; Remove special bindings with empty bodies
(deftransform %cleanup-point (() * * :node node)
  (let ((prev (ctran-use (node-prev (ctran-use (node-prev node))))))
    (cond ((and (combination-p prev)
                (eq (combination-fun-source-name prev nil) '%special-bind)
                (not (node-next node))
                (let ((succ (car (block-succ (node-block node)))))
                  (and succ
                       (block-start succ)
                       (let ((start-cleanup (block-start-cleanup succ)))
                         (and (neq (node-enclosing-cleanup node) start-cleanup)
                              (do-nested-cleanups (cleanup (node-block node) t)
                                (when (eq cleanup start-cleanup)
                                  (return t))
                                (when (eq (cleanup-kind cleanup) :dynamic-extent)
                                  (return))))))))
           (setf (lexenv-cleanup (node-lexenv node)) nil)
           (flush-combination prev)
           nil)
          (t
           (give-up-ir1-transform)))))

(deftransform parse-integer ((string &key (start 0) end radix junk-allowed)
                             (t &key (:radix (constant-arg (or null (member 10 16))))
                                (:start t) (:end t) (:junk-allowed t)))
  `(,(if (and radix
              (= (lvar-value radix) 16))
         'sb-impl::parse-integer16
         'sb-impl::parse-integer10)
    string start end junk-allowed))

(deftransform %coerce-to-policy ((thing) (policy))
  'thing)


(defun prev-node (node &key type (cast t))
  (let (ctran)
    (tagbody
     :next
       (setf ctran (node-prev node))
       (setf node (ctran-use ctran))
     :next-node
       (typecase node
         (ref
          (unless (eq type :non-ref)
            (return-from prev-node node)))
         (cast
          (unless cast
            (return-from prev-node node)))
         (enclose)
         (null
          (let ((pred (block-pred (ctran-block ctran))))
            (when (cdr pred)
              (return-from prev-node))
            (setf node (block-last (car pred)))
            (go :next-node)))
         (t
          (return-from prev-node
            (unless (eq type :ref)
              node))))
       (go :next))))

(defun next-node (node-or-block &key type (cast t) single-predecessor
                                     strict)
  (let ((node node-or-block)
        ctran)
    (tagbody
       (when (block-p node-or-block)
         (when (and single-predecessor
                    (cdr (block-pred node-or-block)))
           (return-from next-node))
         (setf ctran (block-start node-or-block))
         (go :next-ctran))
     :next
       (setf ctran (node-next node))
     :next-ctran
       (cond (ctran
              (setf node (ctran-next ctran))
              (typecase node
                (ref (unless (eq type :non-ref)
                       (return-from next-node node)))
                (cast
                 (when (or strict
                           (not cast))
                   (return-from next-node node)))
                (enclose
                 (when strict
                   (return-from next-node node)))
                (t (return-from next-node
                     (unless (eq type :ref)
                       node))))
              (go :next))
             (t
              (let* ((succ (first (block-succ (node-block node))))
                     (start (block-start succ)))
                (when (and start
                           (not (and single-predecessor
                                     (cdr (block-pred succ)))))
                  (setf ctran start)
                  (go :next-ctran))))))))

(defun next-block (node)
  (and (not (node-next node))
       (car (block-succ (node-block node)))))

(defun range-transform (op a b node)
  (unless (delay-ir1-optimizer node :ir1-phases)
    (let ((if (node-dest node)))
      (flet ((try (consequent alternative)
               (let ((then (next-node consequent :type :non-ref
                                                 :single-predecessor t)))
                 (when (and (combination-p then)
                            (eq (combination-kind then) :known)) ;; no notinline
                   (let ((op2 (combination-fun-debug-name then)))
                     (when (memq op2 '(< <= > >=))
                       (flet ((try2 (&optional reverse-if)
                                (let ((a a)
                                      (b b)
                                      (op op)
                                      (op2 op2)
                                      (after-then))
                                  (destructuring-bind (a2 b2) (combination-args then)
                                    (when (and (cond ((same-leaf-ref-p a a2))
                                                     ((same-leaf-ref-p a b2)
                                                      (rotatef a2 b2)
                                                      (setf op2 (invert-operator op2)))
                                                     ((same-leaf-ref-p b a2)
                                                      (rotatef a b)
                                                      (setf op (invert-operator op))))
                                               (memq op2
                                                     (case op
                                                       ((< <=) '(> >=))
                                                       ((> >=) '(< <=))))
                                               (and (if-p (setf after-then (next-node then)))
                                                    (eq alternative
                                                        (if reverse-if
                                                            (if-consequent after-then)
                                                            (if-alternative after-then)))))
                                      (let* ((integerp (csubtypep (lvar-type a) (specifier-type 'integer)))
                                             (form
                                               (cond ((when (and integerp
                                                                 (constant-lvar-p b)
                                                                 (constant-lvar-p b2))
                                                        (let ((b (lvar-value b))
                                                              (b2 (lvar-value b2)))
                                                          (multiple-value-bind (l h)
                                                              (case op
                                                                (>=
                                                                 (if (eq op2 '<=)
                                                                     (values b b2)
                                                                     (values b (1- b2))))
                                                                (<=
                                                                 (if (eq op2 '>=)
                                                                     (values b2 b)
                                                                     (values (1+ b2) b)))
                                                                (>
                                                                 (if (eq op2 '<=)
                                                                     (values (1+ b) b2)
                                                                     (values (1+ b) (1- b2))))
                                                                (<
                                                                 (if (eq op2 '>=)
                                                                     (values b2 (1- b))
                                                                     (values (1+ b2) (1- b)))))
                                                            (cond ((not l) nil)
                                                                  ((and (= l most-negative-fixnum)
                                                                        (= h most-positive-fixnum))
                                                                   `(fixnump x))
                                                                  ((and (= l 0)
                                                                        (= h most-positive-word))
                                                                   `(#-64-bit unsigned-byte-32-p #+64-bit unsigned-byte-64-p
                                                                     x))
                                                                  ((and (= l (- (expt 2 (1- sb-vm:n-word-bits))))
                                                                        (= h (1- (expt 2 (1- sb-vm:n-word-bits)))))
                                                                   `(#-64-bit signed-byte-32-p #+64-bit signed-byte-64-p
                                                                     x)))))))
                                                     ((not (and (csubtypep (lvar-type b) (specifier-type 'fixnum))
                                                                (csubtypep (lvar-type b2) (specifier-type 'fixnum))))
                                                      nil)
                                                     ((or (not integerp)
                                                          (and (vop-existsp :translate range<)
                                                               (or (vop-existsp :named range<)
                                                                   (and (constant-lvar-p b)
                                                                        (constant-lvar-p b2)))))
                                                      `(,(case op
                                                           (>=
                                                            (case op2
                                                              (<= 'range<=)
                                                              (< 'range<=<)))
                                                           (>
                                                            (case op2
                                                              (<= 'range<<=)
                                                              (< 'range<)))
                                                           (<=
                                                            (case op2
                                                              (>= 'range<=)
                                                              (> 'range<<=)))
                                                           (<
                                                            (case op2
                                                              (>= 'range<=<)
                                                              (> 'range<))))
                                                        l x h))
                                                     ((csubtypep (lvar-type a) (specifier-type 'fixnum))
                                                      nil)
                                                     (t
                                                      `(and (fixnump x)
                                                            ,(case op
                                                               (>=
                                                                (case op2
                                                                  (<= '(<= l (truly-the fixnum x) h))
                                                                  (< '(and (<= l (truly-the fixnum x)) (< (truly-the fixnum x) h)))))
                                                               (>
                                                                (case op2
                                                                  (<= '(and (< l (truly-the fixnum x)) (<= (truly-the fixnum x) h)))
                                                                  (< '(< l (truly-the fixnum x) h))))
                                                               (<=
                                                                (case op2
                                                                  (>= '(<= l (truly-the fixnum x) h))
                                                                  (> '(and (< l (truly-the fixnum x)) (<= (truly-the fixnum x) h)))))
                                                               (<
                                                                (case op2
                                                                  (>= '(and (<= l (truly-the fixnum x)) (< (truly-the fixnum x) h)))
                                                                  (> '(< l (truly-the fixnum x) h))))))))))
                                        (when form
                                          (kill-if-branch-1 if (if-test if)
                                                            (node-block if)
                                                            alternative)
                                          (setf (combination-args node) nil)
                                          (setf (lvar-dest b) then
                                                (lvar-dest a) then)
                                          (flush-combination node)
                                          (setf (combination-args then)
                                                (case op
                                                  ((>= >)
                                                   (list b a b2))
                                                  (t
                                                   (list b2 a b))))
                                          (flush-dest a2)
                                          (transform-call then
                                                          `(lambda (l x h)
                                                             (declare (ignorable l h))
                                                             ,(if reverse-if
                                                                  `(not ,form)
                                                                  form))
                                                          'range<))
                                        t))))))
                         (cond ((try2))
                               (t
                                (setf op2 (not-operator op2))
                                (try2 t))))))))))
        (when (and (if-p if)
                   (immediately-used-p (node-lvar node) node t))
          (cond ((try (if-consequent if) (if-alternative if)))
                (t
                 ;; Deal with (not (< .. ...)) which is transformed from >=.
                 (setf op (not-operator op))
                 (try (if-alternative if) (if-consequent if)))))))))

(defoptimizer (> optimizer) ((a b) node)
  (range-transform '> a b node))

(defoptimizer (< optimizer) ((a b) node)
  (range-transform '< a b node))

(defoptimizer (>= optimizer) ((a b) node)
  (range-transform '>= a b node))

(defoptimizer (<= optimizer) ((a b) node)
  (range-transform '<= a b node))

(when-vop-existsp (:translate check-range<=)
  (deftransform check-range<= ((l x h) (t sb-vm:signed-word t) * :important nil)
    `(range<= l x h))
  (deftransform check-range<= ((l x h) (t sb-vm:word t) * :important nil)
    `(range<= l x h))

  (deftransform check-range<=
      ((l x h) ((constant-arg fixnum) t (constant-arg fixnum)) * :important nil)
    (let* ((type (lvar-type x))
           (l (lvar-value l))
           (h (lvar-value h))
           (range-type (specifier-type `(integer ,l ,h)))
           (intersect (type-intersection type (specifier-type 'fixnum))))
      (cond ((eq intersect *empty-type*)
             nil)
            ((csubtypep intersect range-type)
             `(fixnump x))
            ((and (< l 0)
                  (csubtypep intersect
                             (specifier-type 'unsigned-byte)))
             `(check-range<= 0 x ,h))
            ((let ((int (type-approximate-interval intersect)))
               (when int
                 (let ((power-of-two (1- (ash 1 (integer-length (interval-high int))))))
                   (when (< 0 power-of-two h)
                     `(check-range<= l x ,power-of-two))))))
            (t
             (give-up-ir1-transform)))))

  (macrolet ((def (name ld hd)
               `(deftransform ,name ((l x h) ((constant-arg fixnum) integer (constant-arg fixnum)) * :important nil)
                  (let* ((type (lvar-type x))
                         (l (+ (lvar-value l) ,ld))
                         (h (+ (lvar-value h) ,hd))
                         (range-type (specifier-type `(integer ,l ,h)))
                         (unsigned-type (type-intersection type (specifier-type 'unsigned-byte))))
                    (cond ((and (neq unsigned-type *empty-type*)
                                (csubtypep unsigned-type
                                           range-type))
                           `(>= x l))
                          ((and (< l 0)
                                (csubtypep type
                                           (specifier-type 'unsigned-byte)))
                           `(range<= 0 x ,h))
                          (t
                           (give-up-ir1-transform)))))))
    (def range<= 0 0)
    (def range< 1 -1)
    (def range<<= 1 0)
    (def range<=< 0 -1)))

(defun find-or-chains (node op)
  (let ((chains (make-array 1 :adjustable t :fill-pointer 1 :initial-element nil)))
    (labels ((chain (node)
               (unless (combination-or-chain-computed node)
                 (let ((if (node-dest node)))
                   (when (and (if-p if)
                              (immediately-used-p (node-lvar node) node t))
                     (destructuring-bind (a b) (combination-args node)
                       (when (and (constant-lvar-p b)
                                  (let ((value (lvar-value b)))
                                    (or (fixnump value)
                                        (symbolp value)
                                        (characterp value))))
                         (push (list (lvar-value b) node if)
                               (aref chains (1- (length chains))))
                         (setf (combination-or-chain-computed node) t)
                         (let ((else (next-node (if-alternative if) :type :non-ref
                                                                    :single-predecessor t)))
                           (when (and (combination-p else)
                                      (only-harmless-cleanups (node-block if)
                                                              (if-alternative if))
                                      (eq (combination-kind else) :known)) ;; no notinline
                             (let ((op2 (combination-fun-debug-name else))
                                   after-else)
                               (when (eq op2 op)
                                 (let ((a2 (car (combination-args else))))
                                   (when (and (same-leaf-ref-p a a2)
                                              (if-p (setf after-else (next-node else))))
                                     (unless (eq (if-consequent if)
                                                 (if-consequent after-else))
                                       (vector-push-extend nil chains))
                                     (chain else))))))))))))))
      (chain node)
      (map-into chains #'nreverse chains))))

(defun contiguous-sequence (sorted-values)
  (when (loop for i below (1- (length sorted-values))
              for a = (svref sorted-values i)
              always (= (1+ a) (svref sorted-values (1+ i))))
    (values (svref sorted-values 0)
            (svref sorted-values (1- (length sorted-values))))))

(defun bit-test-sequence (sorted-values)
  (let ((min (elt sorted-values 0))
        (max (elt sorted-values (1- (length sorted-values)))))
    (and (>= min 0) ;; negative numbers can be handled too
         (< (- max min) sb-vm:n-word-bits)
         (values min max))))

(defun or-eq-transform-p (values)
  (and (> (length values) 1)
       (let (fixnump
             characterp)
         (map nil (lambda (value)
                    (unless
                        (cond (fixnump
                               (fixnump value))
                              (characterp
                               (characterp value))
                              ((fixnump value)
                               (setf fixnump t))
                              ((characterp value)
                               (setf characterp t)))
                      (return-from or-eq-transform-p)))
              values)
         (let ((values (sort (map 'vector (if characterp
                                              #'char-code
                                              #'identity)
                                  values)
                             #'<)))
           (or (contiguous-sequence values)
               (bit-test-sequence values))))))

(defun replace-chain (chain form &optional kill-last)
  (let* ((node (second (first chain)))
         (lvar (first (combination-args node))))
    (flush-dest (second (combination-args node)))
    (setf (combination-args node) nil)
    (loop for ((nil node if) next) on chain
          for (a2 b2) = (combination-args node)
          do
          (cond (next
                 (kill-if-branch-1 if (if-test if)
                                   (node-block if)
                                   (if-consequent if))
                 (flush-combination node))
                (t
                 (setf (lvar-dest lvar) node)
                 (setf (combination-args node)
                       (list lvar b2))
                 (flush-dest a2)
                 (transform-call node
                                 form
                                 'or-eq-transform)
                 (when kill-last
                   (kill-if-branch-1 if (if-test if)
                                     (node-block if)
                                     (if-consequent if))))))))

(defun single-or-chain (chain)
  (let* ((node (second (first chain)))
         (lvar (first (combination-args node)))
         (characterp)
         (fixnump)
         (constants (sort (map 'vector
                               (lambda (e)
                                 (let ((value (first e)))
                                   (or
                                    (cond (fixnump
                                           (and (fixnump value)
                                                value))
                                          (characterp
                                           (and (characterp value)
                                                (char-code value)))
                                          ((fixnump value)
                                           (setf fixnump t)
                                           value)
                                          ((characterp value)
                                           (setf characterp t)
                                           (char-code value)))
                                    (return-from single-or-chain))))
                               chain)
                          #'<))
         (type-check (if characterp
                         (not (csubtypep (lvar-type lvar) (specifier-type 'character)))
                         (not (csubtypep (lvar-type lvar) (specifier-type 'fixnum)))))
         (range-check (if (and type-check
                               (not characterp)
                               (vop-existsp :translate check-range<=))
                          'check-range<=
                          '<=)))
    (flet ((type-check (check-fixnum form)
             (if (and type-check
                      (or (not (vop-existsp :translate check-range<=))
                          characterp
                          check-fixnum))
                 `(when (,(if characterp
                              'characterp
                              'fixnump)
                         a)
                    (let ((a (truly-the ,(if characterp
                                             'character
                                             'fixnum)
                                        a)))
                      ,form))
                 form)))
      ;; Transform contiguous ranges into range<=.
      (when (or (vop-existsp :translate range<)
                (> (length constants) 2))
        (multiple-value-bind (min max)
            (contiguous-sequence constants)
          (when min
            (replace-chain chain
                           `(lambda (a b)
                              (declare (ignore b))
                              ,(type-check nil
                                           `(,range-check ,min ,(if characterp
                                                                    '(char-code a)
                                                                    'a)
                                                          ,max))))
            (return-from single-or-chain t))))
      ;; Turn into a bit mask
      (multiple-value-bind (min max)
          (and (> (length constants)
                  (if type-check
                      3
                      2))
               (bit-test-sequence constants))
        (when min
          (replace-chain chain
                         `(lambda (a b)
                            (declare (ignore b))
                            ,(type-check
                              (>= max sb-vm:n-word-bits)
                              `(let ((a ,(if characterp
                                             '(char-code a)
                                             'a)))
                                 ,(cond ((< max sb-vm:n-word-bits)
                                         (let ((interval (type-approximate-interval (lvar-type lvar) t)))
                                           (when (and interval
                                                      (interval-high interval)
                                                      (< (interval-high interval) sb-vm:n-word-bits))
                                             (setf max (interval-high interval))))
                                         `(and (,range-check 0 a ,max)
                                               (logbitp (truly-the (integer 0 ,max) a)
                                                        ,(reduce (lambda (x y) (logior x (ash 1 y)))
                                                                 constants :initial-value 0))))
                                        (t
                                         (decf max min)
                                         `(let ((a (- a ,min)))
                                            (and (<= 0 a ,max)
                                                 (logbitp (truly-the (integer 0 ,max) a)
                                                          ,(reduce (lambda (x y) (logior x (ash 1 (- y min))))
                                                                   constants :initial-value 0))))))))))
          (return-from single-or-chain t)))

      (labels ((%one-bit-diff-p (c1 c2)
                 (and (= (ash c1 (- sb-vm:n-word-bits)) ;; same sign
                         (ash c2 (- sb-vm:n-word-bits)))
                      (= (logcount (logxor c1 c2)) 1)))
               (one-bit-diff-p (c1 c2)
                 (or (%one-bit-diff-p c1 c2)
                     ;; If the difference is a single bit
                     ;; then it can be masked off and compared to 0.
                     (let ((c1 (min c1 c2))
                           (c2 (max c1 c2)))
                       (= (logcount (- c2 c1)) 1)))))
        ;; Comparing integers that differ by only one bit,
        ;; which is useful for case-insensitive comparison of ASCII characters.
        (loop for ((c1 node if) (c2 next-node next-if)) = chain
              while next-node
              do
              (pop chain)
              (destructuring-bind (a b) (combination-args node)
                (destructuring-bind (a2 b2) (combination-args next-node)
                  (let* ((c1-orig c1)
                         (c2-orig c2))
                    (when (and (if characterp
                                   (and (characterp c1)
                                        (characterp c2)
                                        (setf c1 (char-code c1)
                                              c2 (char-code c2)))
                                   (and (fixnump c1)
                                        (fixnump c2)))
                               (one-bit-diff-p c1 c2))
                      (pop chain)
                      (kill-if-branch-1 if (if-test if)
                                        (node-block if)
                                        (if-consequent if))
                      (setf (combination-args node) nil)
                      (flush-combination node)
                      (setf (lvar-dest a) next-node)
                      (setf (combination-args next-node)
                            (list a b2))
                      (flush-dest a2)
                      (flush-dest b)
                      (let* ((value (cond (type-check
                                           ;; Operate on tagged values
                                           (cond (characterp
                                                  (setf c1 (get-lisp-obj-address c1-orig)
                                                        c2 (get-lisp-obj-address c2-orig))
                                                  '(get-lisp-obj-address a))
                                                 (t
                                                  (setf c1 (ash c1 sb-vm:n-fixnum-tag-bits)
                                                        c2 (ash c2 sb-vm:n-fixnum-tag-bits))
                                                  '(mask-signed-field sb-vm:n-word-bits (get-lisp-obj-address a)))))
                                          (characterp
                                           '(char-code a))
                                          (t
                                           'a)))
                             (min (min c1 c2))
                             (max (max c1 c2)))
                        (transform-call next-node
                                        `(lambda (a b)
                                           (declare (ignore b))
                                           ,(cond ((%one-bit-diff-p c1 c2)
                                                   (if (zerop min)
                                                       `(not (logtest ,value ,(lognot (logxor c1 c2))))
                                                       `(eq (logandc2 ,value
                                                                      ,(logxor c1 c2))
                                                            ,min)))
                                                  (t
                                                   `(not (logtest (,@(if type-check
                                                                         '(logand most-positive-word)
                                                                         '(mask-signed-field sb-vm:n-fixnum-bits)) (- ,value ,min))
                                                                  ,(lognot (- max min)))))))
                                        'or-eq-transform)))))))))))

;;; Prevent slow perfect hash finder from hogging time if time spent compiling
;;; is strictly more important than execution speed
(defun slow-findhash-allowed (node)
  (policy node (>= speed compilation-speed)))

(defun or-eq-to-aref (keys key-lists targets last-if chains otherwise)
  (let (constant-targets
        constant-refs
        constant-target
        (ref (next-node (if-consequent last-if) :strict t)))
    (when (and (ref-p ref)
               (constant-p (ref-leaf ref)))
      (let ((lvar (node-lvar ref)))
        (setf constant-target (next-block ref))
        (when lvar
          (loop with constant
                for keys in key-lists
                for target in targets
                for ref = (next-node target :strict t)
                do (unless (and (ref-p ref)
                                (eq lvar (node-lvar ref))
                                (constant-p (setf constant (ref-leaf ref)))
                                (eq constant-target
                                    (next-block ref))
                                (typep (constant-value constant)
                                       '(or symbol number character (and array (not (array t))))))
                     (setf constant-targets nil)
                     (return))
                   (when (and (eq (ctran-kind (node-prev ref)) :block-start)
                              (= (length (block-pred (node-block ref)))
                                 (length keys)))
                     (push ref constant-refs))
                   (push (constant-value constant) constant-targets)))))
    (when constant-targets
      (let ((code (and (slow-findhash-allowed last-if)
                       (expand-hash-case-for-jump-table keys key-lists nil
                                                   (coerce (nreverse constant-targets) 'vector)
                                                   otherwise))))
        (when code
          (replace-chain (reduce #'append chains)
                         `(lambda (key b)
                            (declare (ignore b))
                            (to-lvar ,(node-lvar ref)
                                     ,(or constant-target
                                          (node-ends-block ref))
                                     (the* (,(lvar-type (node-lvar ref)) :truly t)
                                           ,code))))
          (loop for ref in constant-refs
                do
                (delete-ref ref)
                (unlink-node ref))
          t)))))

(defun or-eq-to-jump-table (chains node)
  (let* (keys
         targets
         last-if
         (key-lists
           (loop for chain across chains
                 when chain
                 do
                 (push (if-consequent (third (first chain))) targets)
                 and
                 collect (loop for (key node if) in chain
                               do
                               (when (memq key keys)
                                 (return-from or-eq-to-jump-table))
                               (push key keys)
                               (setf last-if if)
                               collect key)))
         (targets (nreverse targets))
         (lvar (first (combination-args node)))
         (otherwise (and last-if
                         (if-alternative last-if))))
    (cond ((not (and keys
                     (sb-impl::should-attempt-hash-based-case-dispatch keys)
                     (not (key-lists-for-or-eq-transform-p key-lists))))
           nil)
          ((suitable-jump-table-keys-p node keys)
           (replace-chain (reduce #'append chains)
                          `(lambda (key b)
                             (declare (ignore b))
                             (jump-table ,(if (characterp (first keys))
                                              `(if-to-blocks (characterp key)
                                                             (char-code (truly-the character key))
                                                             ,(if-alternative last-if))
                                              `(if-to-blocks (fixnump key)
                                                             (truly-the fixnum key)
                                                             ,(if-alternative last-if)))
                                         ,@(loop for group in key-lists
                                                 for target in targets
                                                 append (loop for key in group
                                                              collect (cons (if (characterp key)
                                                                                (char-code key)
                                                                                key)
                                                                            target)))

                                         (otherwise . ,otherwise)))
                          t)
           t)
          ((let ((diff (type-difference (lvar-type lvar)
                                        (specifier-type `(member ,@keys)))))
             ;; If it's an exhaustive case add the missing case back,
             ;; that way the hash doesn't need to be checked for collisions.
             (multiple-value-bind (p value) (type-singleton-p diff)
               (when (and p
                          (typecase (car keys)
                            (sb-xc:fixnum (fixnump value))
                            (symbol (symbolp value))
                            (character (characterp value))))
                 (push value keys)
                 (setf targets (append targets (list otherwise))
                       key-lists (append key-lists
                                         (list (list value)))
                       otherwise nil)))
             nil))
          ((or-eq-to-aref keys key-lists targets last-if chains otherwise))
          (t
           (multiple-value-bind (code new-targets)
               (and (slow-findhash-allowed node)
                    (expand-hash-case-for-jump-table keys key-lists
                                                     (append targets
                                                             (and otherwise
                                                                  (list (cons 'otherwise
                                                                              otherwise))))))
             (when code
               (replace-chain (reduce #'append chains)
                              `(lambda (key b)
                                 (declare (ignore b))
                                 ,(if new-targets
                                      `(jump-table ,code
                                                   ,@new-targets
                                                   ,@(and otherwise
                                                          `((otherwise . ,otherwise))))
                                      code))
                              t))
             t)))))

;;; Do something when comparing the same value to multiple things.
(defun or-eq-transform (op a b node)
  (declare (ignorable b))
  (unless (delay-ir1-optimizer node :ir1-phases)
    (when (types-equal-or-intersect (lvar-type a) (specifier-type '(or character
                                                                    fixnum
                                                                    symbol)))
      (let ((chains (find-or-chains node op)))
        (or (and (policy node (> jump-table 0))
                 (vop-existsp :named jump-table)
                 (or-eq-to-jump-table chains node))
            (loop for chain across chains
                  do (when (cdr chain)
                       (single-or-chain chain))))
        (unless (node-prev node)
          ;; Don't proceed optimizing this node
          t)))))


(defoptimizer (eq optimizer) ((a b) node)
  (or-eq-transform 'eq a b node))

(defoptimizer (char= optimizer) ((a b) node)
  (or-eq-transform 'char= a b node))

(defun change-jump-table-targets (jump-table new-targets)
  (let* ((block (node-block jump-table)))
    (loop for (nil . target) in new-targets
          unless (memq target (block-succ block))
          do (link-blocks block target))
    (loop for succ in (block-succ block)
          unless (find succ new-targets :key #'cdr)
          do (unlink-blocks block succ))
    (setf (jump-table-targets jump-table) new-targets)
    (reoptimize-node jump-table)))

;;; Return T if KEYS are all of a type that is _directly_ amenable to being
;;; the branch selector in the jump-table vop, and are within a sufficiently
;;; dense range that the resulting table of assembler labels would be reasonably full.
;;; Finally, ensure that any operand encoding restrictions would be adhered to.
(defun suitable-jump-table-keys-p (node keys)
  (unless keys
    (return-from suitable-jump-table-keys-p nil))
  (cond ((every #'fixnump keys))
        ((every #'characterp keys) (setq keys (mapcar #'char-code keys)))
        (t (return-from suitable-jump-table-keys-p nil)))
  (when (policy node (= jump-table 3)) ;; trust it
    (return-from suitable-jump-table-keys-p t))
  ;; There could be a backend-aware aspect to the decision about whether to
  ;; convert to a jump table.
  (flet ((can-encode (min max)
           (declare (ignorable min max))
           #+(or ppc ppc64)
           (and (typep (sb-vm:fixnumize min) '(signed-byte 16))
                (typep (sb-vm:fixnumize (- max min)) '(signed-byte 16)))
           #+(or x86 x86-64 arm64) t))
    (let* ((min (reduce #'min keys))
           (max (reduce #'max keys))
           (table-size (1+ (- max min)))
           ;; TOOD: this size could be reduced now. For spread-out fixnum keys,
           ;; we'll use a perfect hash, making the table exactly sized.
           ;; So the situation where low load factor is beneficial are few.
           (size-limit (* (length keys) 2)))
      ;; Don't waste too much space, e.g. {5,6,10,20} would require 16 words
      ;; for 4 entries, which is excessive.
      (and (<= table-size size-limit)
           (can-encode min max)))))

(defun expand-hash-case-for-jump-table (keys key-lists targets &optional constants default)
  (let* ((phash-lexpr (or (perfectly-hashable keys)
                          (return-from expand-hash-case-for-jump-table (values nil nil))))
         (temp '#1=#:key)               ; GENSYM considered harmful
         (object-hash (prehash-for-perfect-hash temp keys))
         (hashfn
           (compile-perfect-hash
            `(lambda (,temp) (,phash-lexpr ,object-hash))
            (coerce keys 'vector)))
         (result-vector
           (make-array (length (if constants
                                   keys key-lists))
                       :initial-element nil))
         (key-vector (make-array (length keys)
                                 :element-type
                                 (cond #+sb-unicode ((every #'base-char-p keys) 'base-char)
                                       ((every #'characterp keys) 'character)
                                       (t 't))))
         (new-targets))
    (loop for key-list in key-lists
          for target = (pop targets)
          for index from 0
          do (dolist (key key-list)
               (let ((phash (funcall hashfn key)))
                 (setf (aref key-vector phash) key)
                 (cond (constants
                        (setf (aref result-vector phash) (aref constants index)))
                       (t
                        (push (cons phash target) new-targets)
                        (push phash (aref result-vector index)))))))
    (when (simple-vector-p keys)
      (setq keys (coerce-to-smallest-eltype keys)))
    (let* ((typed-h `(truly-the (mod ,(length (if constants
                                                  result-vector
                                                  key-vector))) h))
           (first-target (and new-targets
                              (cdar new-targets)))
           (same-targets (and new-targets
                              (loop for (nil . block) in (cdr new-targets)
                                    always (eq block first-target)))))
      (values `(let* ((#1# key)
                      (h (,phash-lexpr ,object-hash)))
                 ;; EQL reduces to EQ for all object this expanders accepts as keys
                 ,(if constants
                      (if default
                          `(if-to-blocks (and (< h ,(length key-vector))
                                              (eq (aref ,key-vector ,typed-h) #1#))
                                         ,(let ((all-equal (not (position (aref result-vector 0) result-vector :test-not #'eql))))
                                            (if all-equal
                                                `',(aref result-vector 0)
                                                `(aref ,result-vector ,typed-h)))
                                         ,default)
                          `(aref ,result-vector (truly-the (mod ,(length result-vector)) h)))
                      (let ((otherwise (cdr (assoc 'otherwise targets))))
                        (if otherwise
                            `(if-to-blocks
                              (and (< h ,(length key-vector))
                                   (eq (aref ,key-vector ,typed-h) #1#))
                              ,(if same-targets
                                   first-target
                                   typed-h)
                              ,otherwise)
                            typed-h))))
              (unless same-targets
                new-targets)))))

(defun key-lists-for-or-eq-transform-p (key-lists)
  (and (= (length key-lists) 1)
       (or-eq-transform-p (first key-lists))))

(defun ensure-lvar-fun-form (lvar lvar-name &key (coercer '%coerce-callable-to-fun)
                                                 give-up
                                                 node)
  (aver (and lvar-name (symbolp lvar-name)))
  (if (csubtypep (lvar-type lvar) (specifier-type 'function))
      lvar-name
      (let ((cname (lvar-constant-global-fun-name lvar)))
        (cond (cname
               (when node
                 (record-late-xref :calls cname node))
               (if (lvar-annotations lvar)
                   `(with-annotations ,(lvar-annotations lvar)
                      (global-function ,cname))
                   `(global-function ,cname)))
              (give-up
               (give-up-ir1-transform
                ;; No ~S here because if fallback is shown, it wants no quotes.
                "~A is not known to be a function"
                ;; LVAR-NAME is not what to show - if only it were that easy.
                (source-variable-or-else lvar "callable expression")))
              (t
               `(,coercer ,lvar-name))))))

(deftransform %coerce-callable-to-fun ((thing) * * :node node)
  "optimize away possible call to FDEFINITION at runtime"
  (ensure-lvar-fun-form thing 'thing :give-up t :node node))

;;; Behaves just like %COERCE-CALLABLE-TO-FUN but has an ir2-convert optimizer.
(deftransform %coerce-callable-for-call ((thing) * * :node node)
  "optimize away possible call to FDEFINITION at runtime"
  (ensure-lvar-fun-form thing 'thing :give-up t :coercer '%coerce-callable-for-call :node node))

(define-source-transform %coerce-callable-to-fun (thing &environment env)
  (ensure-source-fun-form thing env :give-up t))

;;; Change 'f to #'f
(defoptimizer (%coerce-callable-for-call optimizer) ((fun) node)
  (let ((uses (lvar-uses fun)))
    (when (consp uses)
      (loop for use in uses
            when (ref-p use)
            do (let ((leaf (ref-leaf use)))
                 (when (and (constant-p leaf)
                            (or (internal-name-p (constant-value leaf))
                                (almost-immediately-used-p fun use)))
                   (let ((name (constant-value leaf)))
                     (record-late-xref :calls name use)
                     (change-ref-leaf use (find-global-fun name t) :recklessly t)))))))
  nil)

(defoptimizer (open derive-type) ((filename
                                   &key
                                   direction
                                   if-exists
                                   if-does-not-exist
                                   &allow-other-keys))
  (when (and (or (not if-exists)
                 (not (types-equal-or-intersect (lvar-type if-exists) (specifier-type 'null))))
             (or (not if-does-not-exist)
                 (not (types-equal-or-intersect (lvar-type if-does-not-exist) (specifier-type 'null))))
             (or (not direction)
                 if-does-not-exist
                 (not (types-equal-or-intersect (lvar-type direction) (specifier-type '(eql :probe))))))
    (specifier-type 'stream)))