summaryrefslogtreecommitdiff
path: root/tests/seq.pure.lisp
blob: 51c72d88005cb1089d512e4ca2b52bfac8b706f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
;;;; tests related to sequences

;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; While most of SBCL is derived from the CMU CL system, the test
;;;; files (like this one) were written from scratch after the fork
;;;; from CMU CL.
;;;;
;;;; This software is in the public domain and is provided with
;;;; absolutely no warranty. See the COPYING and CREDITS files for
;;;; more information.

;;; As reported by Paul Dietz from his ansi-test suite for gcl, REMOVE
;;; malfunctioned when given :START, :END and :FROM-END arguments.
;;; Make sure it doesn't happen again.
(with-test (:name (remove :start :end :from-end))
  (let* ((orig '(1 2 3 2 6 1 2 4 1 3 2 7))
         (x (copy-seq orig))
         (y (remove 3 x :from-end t :start 1 :end 5))
         (z (remove 2 x :from-end t :start 1 :end 5)))
    (assert (equalp orig x))
    (assert (equalp y '(1 2 2 6 1 2 4 1 3 2 7)))
    (assert (equalp z '(1 3 6 1 2 4 1 3 2 7)))))

;;; Similarly, NSUBSTITUTE and friends were getting things wrong with
;;; :START, :END and :FROM-END:
(with-test (:name (nsubstitute :start :end :from-end))
  (assert
   (loop for i from 0 to 9 always
            (loop for j from i to 10 always
                     (loop for c from 0 to (- j i) always
                              (let* ((orig '(a a a a a a a a a a))
                                     (x (copy-seq orig))
                                     (y (nsubstitute 'x 'a x :start i :end j :count c)))
                                (equal y (nconc (make-list i :initial-element 'a)
                                                (make-list c :initial-element 'x)
                                                (make-list (- 10 (+ i c))
                                                           :initial-element 'a))))))))

  (assert
   (loop for i from 0 to 9 always
            (loop for j from i to 10 always
                     (loop for c from 0 to (- j i) always
                              (let* ((orig '(a a a a a a a a a a))
                                     (x (copy-seq orig))
                                     (y (nsubstitute-if 'x (lambda (x) (eq x 'a)) x
                                                        :start i :end j
                                                        :count c :from-end t)))
                                (equal y (nconc (make-list (- j c) :initial-element 'a)
                                                (make-list c :initial-element 'x)
                                                (make-list (- 10 j)
                                                           :initial-element 'a))))))))
  (assert
   (loop for i from 0 to 9 always
            (loop for j from i to 10 always
                     (loop for c from 0 to (- j i) always
                              (let* ((orig '(a a a a a a a a a a))
                                     (x (copy-seq orig))
                                     (y (nsubstitute-if-not 'x (lambda (x)
                                                                 (not (eq x 'a))) x
                                                                 :start i :end j
                                                                 :count c :from-end t)))
                                (equal y (nconc (make-list (- j c) :initial-element 'a)
                                                (make-list c :initial-element 'x)
                                                (make-list (- 10 j)
                                                           :initial-element 'a)))))))))

;;; And equally similarly, REMOVE-DUPLICATES misbehaved when given
;;; :START arguments:

(with-test (:name (remove-duplicates delete-duplicates :start :end))
  (let ((orig (list 0 1 2 0 1 2 0 1 2 0 1 2)))
    (assert (equalp (remove-duplicates orig :start 3 :end 9) '(0 1 2 0 1 2 0 1 2)))
    (assert (equalp (delete-duplicates orig :start 3 :end 9) '(0 1 2 0 1 2 0 1 2)))))

;;; tests of COUNT
(with-test (:name (count))
  (assert (= 1 (count 1 '(1 2 3))))
  (assert (= 2 (count 'z #(z 1 2 3 z))))
  (assert (= 0 (count 'y '(z 1 2 3 z)))))

;;; tests of COUNT-IF and COUNT-IF-NOT
(with-test (:name (count-if count-if-not))
  (macrolet (;; the guts of CCI, abstracted over whether we're testing
             ;; COUNT-IF or COUNT-IF-NOT
             (%cci (expected count-if test sequence-as-list &rest keys)
               `(let* ((list ',sequence-as-list)
                       (simple-vector (coerce list 'simple-vector))
                       (length (length list))
                       (vector (make-array (* 2 length) :fill-pointer length)))
                  (replace vector list :end1 length)
                  (dolist (seq (list list simple-vector vector))
                    (assert (= ,expected (,count-if ,test seq ,@keys))))))
             ;; "Check COUNT-IF"
             (cci (expected test sequence-as-list &rest keys)
               `(progn
                  (%cci ,expected
                        count-if
                        ,test
                        ,sequence-as-list
                        ,@keys)
                  (%cci ,expected
                        count-if-not
                        (complement ,test)
                        ,sequence-as-list
                        ,@keys))))
    (cci 1 #'consp (1 (12) 1))
    (cci 3 #'consp (1 (2) 3 (4) (5) 6))
    (cci 3 #'consp (1 (2) 3 (4) (5) 6) :from-end t)
    (cci 2 #'consp (1 (2) 3 (4) (5) 6) :start 2)
    (cci 0 #'consp (1 (2) 3 (4) (5) 6) :start 2 :end 3)
    (cci 1 #'consp (1 (2) 3 (4) (5) 6) :start 1 :end 3)
    (cci 1 #'consp (1 (2) 3 (4) (5) 6) :start 1 :end 2)
    (cci 0 #'consp (1 (2) 3 (4) (5) 6) :start 2 :end 2)
    (cci 2 #'zerop (0 10 0 11 12))
    (cci 1 #'zerop (0 10 0 11 12) :start 1)
    (cci 2 #'minusp (0 10 0 11 12) :key #'1-)
    (cci 1 #'minusp (0 10 0 11 12) :key #'1- :end 2))

  (multiple-value-bind (fun failure-p warnings style-warnings)
      (checked-compile `(lambda ()
                          (count-if #'zerop '(0 a 0 b c) :start 1))
                       :allow-style-warnings t)
    (declare (ignore failure-p warnings))
    (assert (= (length style-warnings) 1))
    (let ((condition (grab-condition (funcall fun))))
      (assert (eql (type-error-datum condition) 'a))))
  (multiple-value-bind (fun failure-p warnings style-warnings)
      (checked-compile `(lambda ()
                          (count-if #'zerop #(0 a 0 b c) :start 1 :from-end 11))
                       :allow-style-warnings t)
    (declare (ignore failure-p warnings))
    (assert (= (length style-warnings) 1))
    (let ((condition (grab-condition (funcall fun))))
      (assert (eql (type-error-datum condition) 'c)))))

;;; :COUNT may be negative and BIGNUM
(with-test (:name (remove :count :negative bignum))
  (assert (equal (remove 1 '(1 2 3 1) :count 1) '(2 3 1)))
  (assert (equal (remove 1 '(1 2 3 1) :count (* 2 most-positive-fixnum)) '(2 3)))
  (assert (equal (remove 1 '(1 2 3 1) :count (* -2 most-positive-fixnum)) '(1 2 3 1))))

;;; bug reported by Wolfgang Jenkner on sbcl-devel 2003-01-04:
;;; embedded calls of SORT do not work
(with-test (:name (sort :nested-calls))
  (assert (equal (sort (list 0 0 0)
                       (lambda (x y)
                         (if (= x y) ; uses X, Y and SORT return value
                             nil
                             (sort (list 0 0 0) #'<))))
                 '(0 0 0)))

  (assert (equal (sort (list 0 0 0 0 0)
                       (lambda (x y)
                         (declare (ignore x y))
                         (block compare
                           (sort (make-list 11 :initial-element 1)
                                 (let ((counter 7))
                                   (lambda (x y)
                                     (declare (ignore x y))
                                     (when (= (decf counter) 0)
                                       (return-from compare nil))
                                     t))))))
                 '(0 0 0 0 0))))

;;; miscellaneous sanity checks on stuff which could've been broken by
;;; changes in MERGE-LIST* in sbcl-0.7.11.*
(with-test (:name (merge stable-sort :sanity-checks))
  (assert (equal (merge 'list () () '<) ()))
  (assert (equal (merge 'list () (list 1) #'< :key 'identity) '(1)))
  (assert (equal (merge 'list (list 2) () '>) '(2)))
  (assert (equal (merge 'list (list 1 2 4) (list 2 3 7) '<) '(1 2 2 3 4 7)))
  (assert (equal (merge 'list (list 1 2 4) (list -2 3 7) #'<) '(-2 1 2 3 4 7)))
  (assert (equal (merge 'list (list 1 2 4) (vector -2 3 7) '< :key 'abs)
                 '(1 2 -2 3 4 7)))
  (assert (equal (merge 'list (list 1 -2 4) (list -2 3 7) '< :key #'abs)
                 '(1 -2 -2 3 4 7)))
  (assert (equal (stable-sort (list 1 10 2 12 13 3) '<) '(1 2 3 10 12 13)))
  (assert (equal (stable-sort (list 1 10 2 12 13 3) #'< :key '-)
                 '(13 12 10 3 2 1)))
  (assert (equal (stable-sort (list 1 10 2 12 13 3) '> :key #'-)
                 '(1 2 3 10 12 13)))
  (assert (equal (stable-sort (list 1 2 3 -3 -2 -1) '< :key 'abs)
                 '(1 -1 2 -2 3 -3))))

;;; CSR broke FILL by not returning the sequence argument in a transform.
(with-test (:name fill)
  (let* ((s1 (copy-seq "abcde"))
         (s2 (fill s1 #\z)))
    (assert s2)
    (assert (string= s2 "zzzzz"))))

;;; POSITION on displaced arrays with non-zero offset has been broken
;;; for quite a while...
(with-test (:name (position :displaced-array))
  (let* ((x #(1 2 3))
         (y (make-array 2 :displaced-to x :displaced-index-offset 1)))
    (assert (= (position 2 y) 0))))

;;; (SIMPLE-STRING) is a legal type specifier for creation functions
(with-test (:name (make-sequence concatenate map merge coerce simple-string))
  (let ((a (make-sequence '(simple-string) 5))
        (b (concatenate '(simple-string) "a" "bdec"))
        (c (map '(simple-string) 'identity "abcde"))
        (d (merge '(simple-string) (copy-seq "acd") (copy-seq "be") 'char>))
        (e (coerce '(#\a #\b #\c #\e #\d) '(simple-string))))
    (assert (= (length a) 5))
    (assert (string= b "abdec"))
    (assert (string= c "abcde"))
    (assert (string= d "beacd"))
    (assert (string= e "abced"))))

;;; COPY-SEQ "should be prepared to signal an error if sequence is not
;;; a proper sequence".
(with-test (:name (copy-seq type-error))
  (locally (declare (optimize safety))
    (multiple-value-bind (seq err) (ignore-errors (copy-seq (opaque-identity '(1 2 3 . 4))))
      (assert (not seq))
      (assert (typep err 'type-error)))))

;;; UBX-BASH-COPY transform had an inconsistent return type
(with-test (:name (replace (unsigned-byte 8) :return-type))
  (let ((sb-c::*check-consistency* t))
    (checked-compile
     '(lambda (l)
       (declare (type fixnum l))
       (let* ((bsize 128)
              (b1 (make-array bsize :element-type '(unsigned-byte 8)))
              (b2 (make-array l :element-type '(unsigned-byte 8))))
         (replace b1 b2 :start2 0 :end2 l))))))

(with-test (:name :bug-452008)
  ;; FIND & POSITION on lists should check bounds and (in safe code) detect
  ;; circular and dotted lists.
  (labels ((safe (&key speed safety &allow-other-keys)
             (case safety
               (0 (= speed 0))
               (t t)))
           (extra-safe (&key speed safety &allow-other-keys)
             (case safety
               (0 (= speed 0))
               (1 (< speed 2))
               (t t)))
           (test (type expr &key (filter #'safe))
             (checked-compile-and-assert
                 (:optimize `(:compilation-speed nil :space nil :filter ,filter)
                  :allow-style-warnings t)
                 `(lambda () ,expr)
               (() (condition type)))))
    (test 'sb-kernel:bounding-indices-bad-error
          '(find :foo '(1 2 3 :foo) :start 1 :end 5 :from-end t))
    (test 'sb-kernel:bounding-indices-bad-error
          '(position :foo '(1 2 3 :foo) :start 1 :end 5 :from-end t))
    (test 'sb-kernel:bounding-indices-bad-error
          '(find :foo '(1 2 3 :foo) :start 3 :end 0 :from-end t))
    (test 'sb-kernel:bounding-indices-bad-error
          '(position :foo '(1 2 3 :foo) :start 3 :end 0 :from-end t))
    (test 'type-error
          '(let ((list (list 1 2 3 :foo)))
             (find :bar (nconc list list)))
          :filter #'extra-safe)
    (test 'type-error
          '(let ((list (list 1 2 3 :foo)))
             (position :bar (nconc list list)))
          :filter #'extra-safe)))

(with-test (:name :bug-554385)
  ;; FIND-IF shouldn't look through the entire list.
  (assert (= 2 (find-if #'evenp '(1 2 1 1 1 1 1 1 1 1 1 1 :foo))))
  ;; Even though the end bounds are incorrect, the
  ;; element is found before that's an issue.
  (assert (eq :foo (find :foo '(1 2 3 :foo) :start 1 :end 5)))
  (assert (= 3 (position :foo '(1 2 3 :foo) :start 1 :end 5))))

(with-test (:name (search :empty-seq))
  (checked-compile-and-assert ()
      `(lambda (x)
         (declare (simple-vector x))
         (search x #()))
    ((#()) 0))
  (checked-compile-and-assert ()
      `(lambda (x)
         (declare (simple-vector x))
         (search x #(t t t)))
    ((#()) 0))
  (checked-compile-and-assert ()
      `(lambda (x)
         (declare (simple-vector x))
         (search x #(t t t) :end1 0))
    ((#(t t t)) 0))
  (checked-compile-and-assert ()
      `(lambda (x)
         (declare (simple-vector x))
         (search x #(t t t) :key nil))
    ((#()) 0))
  (checked-compile-and-assert ()
      `(lambda (x k)
         (declare (simple-vector x))
         (search x #(t t t) :key k))
    ((#() nil) 0))
  (checked-compile-and-assert (:optimize :safe :allow-warnings 'warning)
      `(lambda (x)
         (declare (simple-vector x))
         (search x #(t t t) :start2 1 :end2 0 :end1 0))
    ((#(t t t)) (condition 'sb-kernel:bounding-indices-bad-error)))
  (assert (eql 1
               (funcall (lambda ()
                          (declare (optimize speed))
                          (search #() #(1 1) :start2 1 :end2 1)))))
  (assert (eql 2
               (funcall (lambda ()
                          (declare (optimize speed))
                          (search #(1) #(1 1) :start1 1 :start2 2)))))
  (assert (eql 2
               (funcall (lambda ()
                          (declare (optimize speed))
                          (search #() #(1 1) :from-end t))))))

(with-test (:name (sort :smoke-test))
  (flet ((iota (n type &aux (i 0))
           (map-into (make-sequence type n)
                     (lambda ()
                       (incf i))))
         (shuffle (n type)
           (let ((vector (let ((i 0))
                           (map-into (make-array n)
                                     (lambda ()
                                       (incf i))))))
             (dotimes (i n (coerce vector type))
               (let ((j (+ i (random (- n i)))))
                 (rotatef (aref vector i) (aref vector j))))))
         (sortedp (x)
           (let* ((nonce (list nil))
                  (prev nonce))
             (every (lambda (x)
                      (prog1 (or (eql prev nonce)
                                 (< prev x))
                        (setf prev x)))
                    x))))
    (dolist (type '(simple-vector list))
      (dolist (size '(7 8 9 13 1023 1024 1025 1536))
        (loop for repeat below 5 do
          (assert (sortedp
                   (sort (funcall (case repeat
                                    (0 #'iota)
                                    (1 (lambda (n type)
                                         (reverse (iota n type))))
                                    (t #'shuffle))
                                  size type)
                         #'<))))))))

(with-test (:name (stable-sort :smoke-test))
  (flet ((iota (n type &aux (i 0))
           (map-into (make-sequence type n)
                     (lambda ()
                       (cons 0 (incf i)))))
         (shuffle (n type)
           (let ((max (truncate (expt n 1/4)))
                 (i   0))
             (map-into (make-sequence type n)
                       (lambda ()
                         (cons (random max) (incf i))))))
         (sortedp (x)
           (let* ((nonce (list nil))
                  (prev nonce))
             (every (lambda (x)
                      (prog1 (or (eql prev nonce)
                                 (< (car prev) (car x))
                                 (and (= (car prev) (car x))
                                      (< (cdr prev) (cdr x))))
                        (setf prev x)))
                    x))))
    (dolist (type '(simple-vector list))
      (dolist (size '(0  1  2  3  4  5  6  7  8
                      9 10 11 12 13 14 15 16 17
                      1023 1024 1025 1536))
        (loop for repeat below 5 do
          (assert
           (sortedp
            (stable-sort (funcall (case repeat
                                    (0 #'iota)
                                    (t #'shuffle))
                                  size type)
                         #'< :key #'car))))))))

(with-test (:name :&more-elt-index-too-large)
  (checked-compile-and-assert
      (:optimize `(:filter ,(lambda (&key safety &allow-other-keys)
                              (= safety 3))))
      `(lambda (&rest args)
         (elt args 0))
    (() (condition 'sb-kernel:index-too-large-error))))

(with-test (:name (sequence:dosequence :on-literals))
  (assert (= (sequence:dosequence (e #(1 2 3)) (return e))
             1)))

(with-test (:name (search :transform-notes))
  (checked-compile `(lambda (s)
                      (declare (optimize (speed 3) (safety 0))
                               (type simple-string s))
                      (search "foo" s))
                   :allow-notes nil))

(with-test (:name (concatenate :two-constants))
  (assert (equal (funcall
                  (lambda () (declare (optimize (speed 3)))
                    (concatenate 'string "a" "b")))
                 "ab")))

(with-test (:name (make-sequence :transform :bug-330299))
  (flet ((test (form &rest args)
           (multiple-value-bind (fun failure-p warnings style-warnings)
               (apply #'checked-compile form args)
             (declare (ignore fun failure-p))
             (assert (= (+ (length warnings) (length style-warnings)) 1)))))
    ;; test case from bug report.
    ;; erroneous situation is caught by MAKE-ARRAY
    (test '(lambda (size)
             (make-sequence 'bit-vector size :initial-element #\0))
          :allow-warnings 'sb-int:type-warning)
    ;; This is transformed, but MAKE-ARRAY does *not* consider it a problem
    ;; since #\x is in the upgraded array type. That's too bad, because
    ;; it's still poor style.
    #+nil
    (test '(lambda (size)
             (make-sequence '(member #\a #\b) size :initial-element #\x)))
    ;; additional tests where the transform gives up but warns
    (test '(lambda (n)
             (make-sequence '(vector (integer 1 15) 5) n :initial-element #\x))
          :allow-warnings t)
    (test '(lambda (n)
            (make-sequence '(vector (integer 1 15) 5) n))
          :allow-style-warnings t)))

;; Precisely type-check result of full call to MAP.
(with-test (:name (map notinline :maximally-safe))
  (assert-error
   (locally (declare (notinline map)) (map '(cons symbol) '+ '(1 2) '(3 4)))
   type-error)
  (assert-error
   (locally (declare (notinline map))
            (map '(cons t (cons t null)) '+ '(1 2 3) '(10 10 10)))
   type-error))

(with-test (:name (search :singleton-transform))
  (checked-compile-and-assert ()
    `(lambda (e) (search '(a) '(b) :end1 e))
    ((0) 0)))

(with-test (:name (search :type-derivation))
  (checked-compile-and-assert
   ()
   `(lambda (a b)
      (eql (search a (the (simple-vector 2) b) :from-end t) 2))
   ((#() #(1 2)) t)
   ((#(1) #(1 2)) nil)))

(with-test (:name (count :no-consing)
            :skipped-on :interpreter)
  (let ((f (checked-compile
            '(lambda (x)
              (count 1 x)))))
    (ctu:assert-no-consing (funcall f #(1 2 3 4)))
    (ctu:assert-no-consing (funcall f '(1 2 3 4)))))

(with-test (:name :hash-based-position)
  (let* ((items '(a b c d d d h e f b g b))
         (f (checked-compile
             `(lambda (x) (position x ',items))))
         (g (checked-compile
             `(lambda (x) (position x ',items :from-end t)))))
    (dolist (x items)
      ;; opaque-identify prevents optimizing the POSITION call
      (assert (= (funcall f x) (position x (opaque-identity items))))
      (assert (= (funcall g x) (position x (opaque-identity items) :from-end t))))
    (assert (not (funcall f 'blah)))
    (assert (not (funcall g 'blah)))))

(with-test (:name :hash-based-position-type-derivation)
  ;; should neither crash nor warn about NIL being fed into ASH
  (checked-compile '(lambda (x)
                     (declare (type (member a b) x))
                     (ash 1 (position x #(a b c d d e f))))))

(with-test (:name :position-empty-seq)
  (assert (not (funcall (checked-compile '(lambda (x) (position x #()))) 1))))

;;; I'm keeping this not-very-great test so that if I decide to re-allow hash collisions
;;; in the hash-based MEMBER transform, then there's already a test for it.
(with-test (:name :hash-based-memq :skipped-on :sbcl)
  (let* ((f (checked-compile
             '(lambda (x)
               (if (member x '(:and :or :not and or not)) t nil))))
         (consts (ctu:find-code-constants f :type 'vector)))
    ;; Since there's no canonical order within a bin - we don't know
    ;; whether bin 0 is {:AND,AND} or {AND,:AND} - this gets tricky to check.
    ;; This is unfortunately a change-detector (if we alter SXHASH, or anything).
    (assert (equalp (car consts) #(:and and :or or :not not 0 0)))))

(with-test (:name :memq-empty-seq)
  (assert (not (funcall (checked-compile '(lambda (x) (member x '()))) 1)))
  (assert (not (funcall (checked-compile '(lambda (x) (sb-int:memq x '()))) 1))))

(with-test (:name :adjoin-key-eq-comparable)
  (checked-compile-and-assert
      ()
      `(lambda (x y)
         (adjoin (list x) y :key 'car))
      ((3d0 '((3d0))) '((3d0)) :test #'equal)))

(with-test (:name :fill-transform-bounds-checks)
  (checked-compile-and-assert
      (:optimize :default)
      `(lambda (item start end)
         (fill (make-array 3 :element-type '(unsigned-byte 8)) item :start start :end end))
    ((2 0 nil) #(2 2 2) :test #'equalp)
    ((2 10 10)  (condition 'sb-kernel:bounding-indices-bad-error))
    ((2 2 1)  (condition 'sb-kernel:bounding-indices-bad-error))
    ((2 10 nil)  (condition 'sb-kernel:bounding-indices-bad-error))))

(with-test (:name :fill-transform-derive-type)
  (assert
   (equal (sb-kernel:%simple-fun-type
           (checked-compile
            '(lambda (x)
              (fill (the (simple-array (unsigned-byte 32) (*)) x) 0))))
          '(FUNCTION (T) (VALUES (SIMPLE-ARRAY (UNSIGNED-BYTE 32) (*)) &OPTIONAL)))))


(with-test (:name :fill-transform-print-case)
  (let ((*print-case* :downcase))
    (checked-compile-and-assert
        ()
        `(lambda (x)
           (make-array 3 :element-type 'fixnum :initial-element x))
      ((1) #(1 1 1) :test #'equalp))))


(with-test (:name (search :type-derivation))
  (checked-compile-and-assert
      ()
      `(lambda (s)
         (search '(a) s :end1 nil))
    (('(b a)) 1)
    ((#(1)) nil)))

(with-test (:name :array-equalp-non-consing
                  :skipped-on :interpreter)
  (let ((a (make-array 1000 :element-type 'double-float :initial-element 0d0))
        (b (make-array 1000 :element-type 'double-float :initial-element 0d0)))
    (ctu:assert-no-consing (equalp a b))))

(with-test (:name (search :array-equalp-numerics))
  ;; This tests something that wasn't broken, but given that the new algorithm
  ;; is potentially more complicated, it makes sense to test that various
  ;; combinations of numeric arrays compare as equalp when they should.
  (let (arrays (testdata '(7 3 1 5)))
    (sb-int:dovector
        (saetp (remove-if (lambda (x)
                            (not (typep (sb-vm:saetp-ctype x) 'sb-kernel:numeric-type)))
                          sb-vm:*specialized-array-element-type-properties*))
      (let ((et (sb-vm::saetp-specifier saetp)))
        (unless (or (eq et 'bit) (equal et '(unsigned-byte 2)))
          (let ((fancy-array
                 (make-array 4 :element-type et
                               :displaced-to (make-array 5 :element-type et)
                               :displaced-index-offset 1)))
            (replace fancy-array
                     (mapcar (lambda (x) (coerce x et)) testdata))
            (push fancy-array arrays)))))
    ;; All pairs should be EQUALP and it should be commutative
    ;; and they should be EQUALP to a simple-vector.
    (let* ((sv1 (coerce testdata 'simple-vector))
           (sv2 (map 'simple-vector (lambda (x) (coerce x 'single-float)) sv1))
           (sv3 (map 'simple-vector (lambda (x) (coerce x 'double-float)) sv1))
           (sv4 (map 'simple-vector (lambda (x) (coerce x '(complex single-float))) sv1))
           (sv5 (map 'simple-vector (lambda (x) (coerce x '(complex double-float))) sv1))
           (svs (list sv1 sv2 sv3 sv4 sv5)))
      (dolist (x arrays)
        ;; Try simple vectors containing types that are not EQL to the testdata
        (dolist (sv svs)
          (assert (equalp x sv))
          (assert (equalp sv x)))
        ;; Try all other numeric array types
        (dolist (y arrays)
          (assert (equalp x y)))))))

;; lp#1938598
(with-test (:name :vector-replace-self)
  ;; example 1
  (let ((string (make-array 0 :adjustable t :fill-pointer 0 :element-type 'character)))
    (declare (notinline replace))
    (vector-push-extend #\_ string)
    ;; also test it indirectly
    (replace string string :start1 1 :start2 0))
  ;; example 2
  (let ((string (make-array 0 :adjustable t :fill-pointer 0 :element-type 'character)))
    (declare (notinline replace))
    (loop for char across "tset" do (vector-push-extend char string))
    (replace string string :start2 1 :start1 2)
    (assert (string= string "tsse"))))

(with-test (:name :sort-vector-length-1
                  :skipped-on :interpreter)
  (let ((v (vector 5)))
    (ctu:assert-no-consing (stable-sort v #'<))))

(with-test (:name (replace :empty-constant))
  (checked-compile-and-assert
      ()
      `(lambda (v s)
         (replace (the simple-vector v) #() :start1 s))
    ((#(1) 0) #(1) :test #'equalp)))

(with-test (:name :reduce-type-derive)
  (macrolet
      ((check (fun expected)
         `(assert
           (equal (second
                   (third
                    (sb-kernel:%simple-fun-type
                     (checked-compile '(lambda (x)
                                        ,fun)))))
                  ',expected))))
    (check (reduce '+ x)
           t)
    (check (reduce '+ x :end 10)
           number)
    (check (reduce '+ x :initial-value 10)
           number)
    (check (reduce '+ (the (simple-array t (1)) x))
           t)
    (check (reduce '+ (the (simple-array t (2)) x))
           number)
    (check (reduce '+ (the (simple-array t (10)) x) :end 1)
           t)
    (check (reduce '+ (the (simple-array fixnum (*)) x))
           integer)
    (check (reduce '+ (the (simple-array (unsigned-byte 8) (*)) x))
           unsigned-byte)
    (check (reduce '+ (the (simple-array (unsigned-byte 8) (*)) x) :initial-value -1)
           integer)
    (check (reduce '+ (the (simple-array double-float (*)) x) :initial-value 1)
           (or double-float (integer 1 1)))
    (check (reduce '+ (the (simple-array double-float (*)) x) :initial-value 1d0)
           double-float)
    (check (reduce '+ (the (simple-array double-float (*)) x))
           (or double-float (integer 0 0)))
    (check (reduce '+ (the (simple-array double-float (10)) x))
           double-float)
    (check (reduce '+ (the (simple-array double-float (1)) x))
           double-float)
    (check (reduce '+ x :key #'length)
           unsigned-byte)
    (check (reduce '+ x :key #'length :initial-value -1)
           integer)))

(with-test (:name :find-type-derive)
  (macrolet
      ((check (fun expected)
         `(assert
           (type-specifiers-equal
            (second
                   (third
                    (sb-kernel:%simple-fun-type
                     (checked-compile '(lambda (x y)
                                        (declare (ignorable x y))
                                        ,fun)))))
                  ',expected))))
    (check (find x y) t)
    (check (find 1 y) (or (integer 1 1) null))
    (check (find x y :key #'car) list)
    (check (find x y :test #'=) (or number null))
    (check (find x y :key #'car :test #'=) list)
    (check (find x (the vector y) :key #'car) list)
    (check (find-if #'evenp y) (or integer null))
    (check (find-if #'evenp (the list y) :key #'car) list)
    (check (find x (the (simple-array character (*)) y)) (or character null))
    (check (find x (the string y)) (or character null))
    (check (find #\A y :test #'char=) (or (eql #\A) null))
    (check (find #\a y :test #'char-equal) (or standard-char null))))

(with-test (:name :position-type-derive)
  (macrolet
      ((check (fun expected)
         `(assert
           (ctype= (second
                    (third
                     (sb-kernel:%simple-fun-type
                      (checked-compile '(lambda (x y)
                                         (declare (ignorable x y))
                                         ,fun)))))
                   ',expected))))
    (check (position x y) (or (integer 0 (#.(1- array-dimension-limit))) null))
    (check (position x (the (simple-string 10) y)) (or (mod 10) null))
    (check (position x y :end 10) (or (mod 10) null))
    (check (position x (the cons y) :start 5 :end 10) (or (integer 5 9) null))
    (check (position-if x y :end 10) (or (mod 10) null))
    (check (position x y :start (the (integer 10 20) x) :end x) (or (or (integer 10 19) null) null))))

(with-test (:name :string-cmp)
  (macrolet
      ((check (fun expected)
         `(assert
           (ctype= (second
                    (third
                     (sb-kernel:%simple-fun-type
                      (checked-compile '(lambda (x y)
                                         (declare (ignorable x y))
                                         ,fun)))))
                   ',expected))))
    (check (string/= (the simple-string x) (the simple-string y) :end2 0)
           (or (integer 0 0) null))))

(with-test (:name :reverse-specialized-arrays)
  (loop for saetp across sb-vm:*specialized-array-element-type-properties*
        for type = (sb-kernel:type-specifier (sb-vm:saetp-ctype saetp))
        when type
        do
        (let ((value-transformer (cond ((eq type #+sb-unicode 'base-char
                                                 #-sb-unicode 'character)
                                        (lambda (x)
                                          (code-char
                                           (if (>= x sb-int:base-char-code-limit)
                                               (random sb-int:base-char-code-limit)
                                               x))))
                                       #+sb-unicode
                                       ((eq type 'character)
                                        (lambda (x)
                                          (code-char x)))
                                       ((eq type 'bit)
                                        (lambda (x)
                                          x
                                          (random 2)))
                                       ((subtypep type 'integer)
                                        (if (eq type 'fixnum)
                                            #'identity
                                            (let* ((signed (eq (car type) 'signed-byte))
                                                   (width (second type))
                                                   (mod (expt 2 (- width
                                                                   (if signed
                                                                       1
                                                                       0)))))
                                              (if (< mod 1300)
                                                  (lambda (x)
                                                    (if (>= x mod)
                                                        (random mod)
                                                        x))
                                                  (lambda (x)
                                                    x)))))
                                       (t
                                        (lambda (x)
                                          (coerce x type))))))
          (loop for i to (floor 1300
                                (ceiling (sb-vm:saetp-n-bits saetp) sb-vm:n-word-bytes))
                for list = (loop for j from 1 to i
                                 collect (funcall value-transformer j))
                for reverse = (reverse list)
                for vector = (make-array i :element-type type
                                           :initial-contents list)
                do
                (let* ((offset (1+ (random 120)))
                       (prefix (loop for j from 1 to offset
                                     collect (funcall value-transformer j)))
                       (suffix (loop for j from 1 to (- 128 offset)
                                     collect (funcall value-transformer j)))
                       (contents (concatenate 'list prefix list suffix))
                       (source (make-array (+ i 128) :element-type type
                                                     :initial-contents contents))
                       (displaced (make-array i :element-type type
                                                :displaced-to source
                                                :displaced-index-offset offset
                                                :fill-pointer i)))
                  (assert (equal reverse (coerce (reverse displaced) 'list)))
                  (assert (equal reverse (coerce (nreverse displaced) 'list)))
                  (assert (equal prefix (coerce (subseq source 0 offset) 'list)))
                  (assert (equal suffix (coerce (subseq source (+ offset i)) 'list))))
                (assert (equal reverse (coerce (reverse vector) 'list)))
                (assert (equal reverse (coerce (nreverse vector) 'list)))))))

(with-test (:name :list-derived-type)
  (macrolet
      ((check (fun expected)
         `(assert
           (ctype= (second
                    (third
                     (sb-kernel:%simple-fun-type
                      (checked-compile '(lambda (x y)
                                         (declare (ignorable x y))
                                         ,fun)))))
                   ',expected))))
    (check (sort (the (cons (eql 0)) x) y)
           cons)))

(with-test (:name :range-error-fill-transform)
  (assert
   (nth-value 2 (checked-compile `(lambda (x y)
                                    (declare ((simple-base-string 10) x))
                                    (fill x y :start 12))
                                 :allow-warnings t))))

(with-test (:name :find-compile-time-mismatch)
  (assert
   (nth-value 2 (checked-compile `(lambda (c) (find c #*10 :test #'char-equal))
                                 :allow-warnings t))))

(with-test (:name :subseq-nil-array)
  (checked-compile-and-assert
   ()
   `(lambda (s)
      (subseq s 2))
   (((make-array 5 :element-type nil))
    3 :test (lambda (s n)
              (= (car n) (length (car s)))))))

(with-test (:name :use-%bit-pos-fwd/1)
  (assert (equal  (ctu:ir1-named-calls `(lambda (x)
                                          (declare (optimize speed))
                                          (find 1 (the simple-bit-vector x))))
                  '(SB-KERNEL:%BIT-POS-FWD/1))))

(with-test (:name :sort-inlining-warnings)
  (checked-compile `(lambda (x)
                      (declare (optimize (debug 2) (space 0)))
                      (sort x #'< :key #'car))))

(with-test (:name :sort-inline-return-value)
  (checked-compile-and-assert
   ()
   `(lambda (v)
      (declare ((vector t) v))
      (locally (declare (optimize (space 0)))
        (sort v #'<)))
   (((vector 2 1)) #(1 2) :test #'equalp)))

(with-test (:name :read-sequence-type)
  (assert-type
   (lambda (stream)
     (let ((seq (make-string 100)))
       (read-sequence seq stream)))
   (mod 101))
  (assert-type
   (lambda (stream n)
     (let ((seq (make-string n)))
       (read-sequence seq stream :end 10)))
   (mod 11))
  (assert-type
   (lambda (stream)
     (let ((seq (make-string 10)))
       (read-sequence seq stream :start 1)))
   (integer 1 10)))

(with-test (:name (replace :or-null))
  (checked-compile `(lambda (a b)
                      (declare ((or null simple-base-string) a)
                               ((or null (simple-array character (*))) b)
                               (optimize speed))
                      (replace a b))
                   :allow-notes nil)
  (checked-compile `(lambda (a b)
                      (declare ((or null simple-base-string) a)
                               ((simple-array character (*)) b)
                               (optimize speed))
                      (replace a b))
                   :allow-notes nil)
  (checked-compile `(lambda (a b)
                      (declare ((or null simple-base-string) a b)
                               (optimize speed))
                      (replace a b))
                   :allow-notes nil)
  (checked-compile `(lambda ()
                      (coerce nil 'vector))
                   :allow-notes nil)
  (checked-compile `(lambda ()
                      (replace nil #()))
                   :allow-notes nil))

(with-test (:name :reduce-type)
  (assert-type
   (lambda (v)
     (declare ((vector (unsigned-byte 8)) v))
     (reduce #'logior v))
   (unsigned-byte 8)))

(with-test (:name :position-index-errors)
  (assert (= (count 'sb-int:sequence-bounding-indices-bad-error
                    (ctu:ir1-named-calls `(lambda (y)
                                            (declare (optimize speed)
                                                     (simple-string y))
                                            (position #\a y :start 1))))
             1))
  (assert (= (count 'sb-int:sequence-bounding-indices-bad-error
                    (ctu:ir1-named-calls `(lambda (y)
                                            (declare (optimize speed)
                                                     (string y))
                                            (find #\a y :start 1))))
             1)))

(with-test (:name :find-equalp-type)
  (assert-type
   (lambda (y j)
     (declare ((or integer simple-string) j))
     (find j y :test #'equalp))
   (or array number null)))

(with-test (:name :sequence-union-types)
  (assert-type
   (lambda (x)
     (declare ((or cons (simple-vector 10)) x))
     (copy-seq x))
   (or cons (simple-vector 10)))
  (assert-type
   (lambda (x)
     (declare ((or list (vector t 10)) x))
     (reverse x))
   (or list simple-vector))
  (assert-type
   (lambda (x)
     (declare (cons x))
     (copy-seq x))
   cons)
  (assert-type
   (lambda (x)
     (declare ((simple-vector 10) x))
     (remove 10 x))
   simple-vector))

(with-test (:name :concatenate-list-type)
  (assert-type
   (lambda (x)
     (concatenate 'list '(1 2 3) x))
   cons))